The cadmium sulfide (CdS) n-type semiconductor is one of the most used as a window layer in thin-film solar cells, such as CdTe, CIS, CIGS, and CZTS. Optoelectronic properties are the most important characteristics for window materials. CdS thin films obtained using the chemical bath deposition technique (CBD) have been reported; however, large amounts of precursor solutions are used, which generate considerable amounts of toxic waste. The aim of this work is to reduce the amount of precursor solutions used for CdS growth; for this, it is necessary to consider an efficient position for the substrate inside the reactor container and at the same time allow obtaining CdS thin films with adequate physical properties to be applied in the photovoltaic solar cell development. CdS thin films were deposited on soda-lime/SnO:F substrates (FTO) using the CBD technique; the substrates were placed in three different arrangements [rack system, step system (up), and step system (down)]. CdS samples with areas of 4 cm and a thickness of 27-48 nm were obtained; the X-ray diffraction patterns show CdS thin films with different polycrystalline structures. The morphological measurements reveal different surface formations depending on the substrate position, and resistivity values of around 10 Ω*cm were measured. UV-vis spectra show transmittance values of around 45-94% in the visible region with band gap energy values of around 2.1-2.36 eV. The best physical properties of CdS thin films and an efficient CBD process were obtained when the FTO substrates were located near the bottom of the reactor container with the FTO side down, leading to an optimal configuration that allows reducing the amount of precursor solutions and in this way reduces the toxic waste generated. These results are important in the photovoltaic technology process and environmental impact.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10483672PMC
http://dx.doi.org/10.1021/acsomega.3c02158DOI Listing

Publication Analysis

Top Keywords

cds thin
20
thin films
20
reactor container
12
precursor solutions
12
cds
9
substrate position
8
inside reactor
8
cbd technique
8
toxic waste
8
amount precursor
8

Similar Publications

Sequential Infiltration Synthesis of Cadmium Sulfide Discrete Atom Clusters.

Angew Chem Int Ed Engl

January 2025

Material Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois, 60439, United States.

Exposure of soft material templates to alternating volatile chemical precursors can produce inorganic deposition within the permeable template (e.g. a polymer thin film) in a process akin to atomic layer deposition (ALD).

View Article and Find Full Text PDF

PO Tetrahedron Assisted Chelate Engineering for 10.67%-Efficient Antimony Selenosulfide Solar Cells.

Adv Mater

January 2025

Institute of Thin Film Physics and Applications, Shenzhen Key Laboratory of Advanced Thin Films and Applications, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China.

Anisotropic carrier transport and deep-level defect of antimony selenosulfide (Sb(S,Se)) absorber are two vital auses restraining the photovoltaic performance of this emerging thin-film solar cell. Herein, chelate engineering is proposed to prepare high-quality Sb(S,Se) film based on hydrothermal deposition approach, which realizes desirable carrier transport and passivated defects by using tetrahedral PO ion in dibasic sodium phosphate (NaHPO, DSP). The PO Lewis structure, on one hand in the form of [(SbO)(PO)] chelate, can adsorb on the polar planes of cadmium sulfide (CdS) layer, promoting the heterogeneous nucleation, and on the other hand, the tetrahedral PO inhibits horizontal growth of (SbS(e)) ribbons due to size effects, thus achieving desirable [hk1] orientation.

View Article and Find Full Text PDF

Carbon dots (CDs) as a new class of photoluminescent zero-dimension carbon nanoparticles have attracted significant research interests owing to their extraordinary opto-electro-properties and biocompatibility. So far, almost all syntheses of CDs require either heat treatment or exertion of high energy fields. Herein, a scalable room-temperature vortex fluidic method is introduced to the CDs synthesis using the angled vortex fluidic device (VFD).

View Article and Find Full Text PDF

Antimony selenide (SbSe) shows promise for photovoltaics due to its favorable properties and low toxicity. However, current SbSe solar cells exhibit efficiencies significantly below their theoretical limits, primarily due to interface recombination and non-optimal device architectures. This study presents a comprehensive numerical investigation of SbSe thin-film solar cells using SCAPS-1D simulation software, focusing on device architecture optimization and interface engineering.

View Article and Find Full Text PDF

In this study, we explore the photovoltaic performance of an innovative high efficiency heterostructure utilizing the quaternary semiconductor CuFeSnSe (CFTSe). This material features a kesterite symmetrical structure and is distinguished by its non-toxic nature and abundant presence in the earth's crust. Utilizing the SCAPS simulator, we explore various electrical specifications such as short circuit current (J), open circuit voltage (V), the fill factor (FF), and power conversion efficiency (PCE) were explored at a large range of thicknesses, and the acceptor carrier concentration doping (N).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!