Most rubber products come from petrochemical resources, which are increasingly in short supply. Rubber products that formed irreversible chemical bonds in the vulcanization process are difficult to recycle, resulting in a serious waste of resources. Therefore, it is important to prepare a kind of reprocessable biobased elastomers. Using furfuryl methacrylate (FMA) as the modified monomer, poly(dibutyl itaconate-myrcene-furfuryl methacrylate) (PDBIMFA) was synthesized by high-temperature emulsion polymerization successfully. The structure and compositions of PDBIMFA were characterized by Fourier transform infrared and H NMR, and the effects of different FMA contents on the structures and properties of PDBIMFA were systematically studied. Based on the Diels-Alder reaction, bismaleimide (BMI) and carbon black (CB) were introduced into PDBIMFA as cross-linking agents and reinforcing fillers, respectively, by the melt blending method, and PDBIMFA-BMI elastomer materials and CB/PDBIMFA-BMI elastomer composites with thermo-reversible cross-linking characteristics were prepared. The effects of the ratio of FMA and BMI on the mechanical properties of PDBIMFA-BMI were studied. PDBIMFA-BMI and CB/PDBIMFA-BMI were reprocessed twice, and the recovery rate of tensile strength was both more than 90%. The addition of CB was found to play a reinforcing role in the elastomer and with the introduction of the amount of CB, the reprocessability of composite remained at a good level. It is hoped that this research will provide a new strategy for the sustainable development of bio-based elastomer materials.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10483686 | PMC |
http://dx.doi.org/10.1021/acsomega.3c04528 | DOI Listing |
Polymers (Basel)
December 2024
College of Mechanical Engineering, Taiyuan University of Technology, Taiyuan 030024, China.
Rubber is widely used in situations involving cyclic loads, and the influence of temperature on rubber properties is particularly pronounced under cyclic loading. In this study, mechanical property tests and crack propagation tests of carbon black-filled hydrogenated nitrile butadiene rubber were conducted at four different operating temperatures. Based on the results of the crack propagation tests, the temperature-dependent characteristics of the Paris-Erdogan parameters and strain energy density were clarified.
View Article and Find Full Text PDFMolecules
December 2024
Institute of Integrated Natural Sciences, University Koblenz, Universitätsstr. 1, 56070 Koblenz, Germany.
Tire wear particles (TWPs) are among the most relevant sources of microplastic pollution of the environment. Nevertheless, common analytical methods like IR and Raman spectroscopy are highly impaired by additives and filler materials, leaving only thermogravimetric methods for chemical analysis of TWPs in most cases. We herein present quantitative NMR spectroscopy (qNMR) as an alternative tool for the quantification of the polymeric material used for the production of tires, including natural rubber (NR), styrene-butadiene-copolymer (SBR), polyethylene-co-propylene (EPR) and polybutadiene (BR).
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Plant Physiology, Faculty of Biology, Institute of Experimental Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland.
Biodegradable materials are currently one of the main focuses of research and technological development. The significance of these products grows annually, particularly in the fight against climate change and environmental pollution. Utilizing artificial biopolymers offers an opportunity to shift away from petroleum-based plastics with applications spanning various sectors of the economy, from the pharmaceutical and medical industries to food packaging.
View Article and Find Full Text PDFAntibiotics (Basel)
December 2024
Microbiology at Interfaces, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK.
Bacterial attachment and biofilm formation are associated with the contamination and fouling at several locations in a washing machine, which is a particularly complex environment made from a range of metal, polymer, and rubber components. Microorganisms also adhere to different types of clothing fibres during the laundering process as well as a range of sweat, skin particles, and other components. This can result in fouling of both washing machine surfaces and clothes and the production of malodours.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
College of Materials and Chemistry, China Jiliang University, 258 Xueyuan Street, Xiasha Higher Education Zone, Hangzhou 310018, China. Electronic address:
6PPD-quinone (6PPD-Q) as a derivative of the rubber antioxidant N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD), is attracting intensive attention due to the significant hazard to ecosystems. However, the effective management of this type of contaminant has been scarcely reported. Hydrangea-like hollow O, Cl-codoped graphite-phase carbon nitride microspheres (HHCN), featuring open pores were readily prepared by molecular self-assembly and utilized to address 6PPD-Q in an aqueous system for the first time.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!