Anti-neuronal autoantibodies can be transplacentally transferred during pregnancy and may cause detrimental effects on fetal development. It is unclear whether autoantibodies against synapsin-I, one of the most abundant synaptic proteins, are associated with developmental abnormalities in humans. We recruited a cohort of 263 pregnant women and detected serum synapsin-I IgG autoantibodies in 13.3% using cell-based assays. Seropositivity was strongly associated with abnormalities of fetal development including structural defects, intrauterine growth retardation, amniotic fluid disorders and neuropsychiatric developmental diseases in previous children (odds ratios of 3-6.5). Autoantibodies reached the fetal circulation and were mainly of IgG1/IgG3 subclasses. They bound to conformational and linear synapsin-I epitopes, five distinct epitopes were identified using peptide microarrays. The findings indicate that synapsin-I autoantibodies may be clinically useful biomarkers or even directly participate in the disease process of neurodevelopmental disorders, thus being potentially amenable to antibody-targeting interventional strategies in the future.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10483408PMC
http://dx.doi.org/10.1016/j.bbih.2023.100678DOI Listing

Publication Analysis

Top Keywords

fetal development
8
autoantibodies
5
synapsin autoantibodies
4
autoantibodies pregnancy
4
pregnancy associated
4
fetal
4
associated fetal
4
fetal abnormalities
4
abnormalities anti-neuronal
4
anti-neuronal autoantibodies
4

Similar Publications

Distinct phenotypes in the preeclamptic-like mouse model induced by adenovirus carrying sFlt1 and recombinant sFlt1 protein.

Eur J Med Res

December 2024

Clinical and Translational Research Center, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.

Background: Preeclampsia (PE) is a pregnancy-specific, multisystemic disorder that affects 2-8% pregnancies worldwide and is a leading cause of maternal and perinatal mortality. At present, there is no cure for PE apart from delivery the placenta. Therefore, it is important and urgent to possess a suitable animal model to study the pathology and treatment of PE.

View Article and Find Full Text PDF

Fetal growth restriction (FGR) is a common complication of pregnancy, which seriously endangers fetal health and still lacks effective therapeutic targets. Clostridium difficile (C. difficile) is associated with fetal birth weight, and its membrane vesicles (MVs) are pathogenic vectors.

View Article and Find Full Text PDF

Objective: To examine the association between preterm delivery and parental separation and identify associated risk factors.

Methods: All opposite sex, married or common-law parents whose relationship status was available at index delivery and for the next 5 years were eligible in this retrospective population-based cohort study in Manitoba, Canada. Parents of children born preterm were matched 1:5 to parents of children born full-term.

View Article and Find Full Text PDF

Elevated Serum Homocysteine Levels Impair Embryonic Neurodevelopment by Dysregulating the Heat Shock Proteins.

Dev Neurobiol

January 2025

Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China.

Observational studies have found that elevated serum homocysteine (Hcy) levels during pregnancy may be associated with the occurrence of neural tube defects (NTDs). However, the effect of Hcy on fetal neural development and its underlying molecular mechanisms remains unclear. To uncover the molecular mechanism, we analyzed the serum Hcy concentration in pregnant women with normal and abnormal pregnancy outcomes and treated zebrafish model embryos with high Hcy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!