Spermatogenesis is a crucial biological process that enables the production of functional sperm, allowing for successful reproduction. Proper germ cell differentiation and maturation require tight regulation of hormonal signals, cellular signaling pathways, and cell biological processes. The acrosome is a lysosome-related organelle at the anterior of the sperm head that contains enzymes and receptors essential for egg-sperm recognition and fusion. Even though several factors crucial for acrosome biogenesis have been discovered, the precise molecular mechanism of pro-acrosomal vesicle formation and fusion is not yet known. In this study, we investigated the role of the insulin inhibitory receptor (inceptor) in acrosome formation. Inceptor is a single-pass transmembrane protein with similarities to mannose-6-phosphate receptors (M6PR). Inceptor knockout male mice are infertile due to malformations in the acrosome and defects in the nuclear shape of spermatozoa. We show that inceptor is expressed in early spermatids and mainly localizes to vesicles between the Golgi apparatus and acrosome. Here we show that inceptor is an essential factor in the intracellular transport of -Golgi network-derived vesicles which deliver acrosomal cargo in maturing spermatids. The absence of inceptor results in vesicle-fusion defects, acrosomal malformation, and male infertility. These findings support our hypothesis of inceptor as a universal lysosomal or lysosome-related organelle sorting receptor expressed in several secretory tissues.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10483240 | PMC |
http://dx.doi.org/10.3389/fcell.2023.1240039 | DOI Listing |
Nat Metab
December 2024
Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany.
Blunted first-phase insulin secretion and insulin deficiency are indicators of β cell dysfunction and diabetes manifestation. Therefore, insights into molecular mechanisms that regulate insulin homeostasis might provide entry sites to replenish insulin content and restore β cell function. Here, we identify the insulin inhibitory receptor (inceptor; encoded by the gene IIR/ELAPOR1) as an insulin-binding receptor that regulates insulin stores by lysosomal degradation.
View Article and Find Full Text PDFDev Cell
July 2024
Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA 93110, USA. Electronic address:
Proteotoxic stress drives numerous degenerative diseases. Cells initially adapt to misfolded proteins by activating the unfolded protein response (UPR), including endoplasmic-reticulum-associated protein degradation (ERAD). However, persistent stress triggers apoptosis.
View Article and Find Full Text PDFInt J Cancer
August 2024
Pancreatic Cancer Section, Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA.
Pancreatic ductal adenocarcinoma (PDAC) is a heterogeneous disease with distinct molecular subtypes described as classical/progenitor and basal-like/squamous PDAC. We hypothesized that integrative transcriptome and metabolome approaches can identify candidate genes whose inactivation contributes to the development of the aggressive basal-like/squamous subtype. Using our integrated approach, we identified endosome-lysosome associated apoptosis and autophagy regulator 1 (ELAPOR1/KIAA1324) as a candidate tumor suppressor in both our NCI-UMD-German cohort and additional validation cohorts.
View Article and Find Full Text PDFActa Ophthalmol
September 2024
National Healthcare Group Eye Institute, Tan Tock Seng Hospital, Singapore, Singapore.
Purpose: To assess intra- (repeatability) and inter-observer (reproducibility) variability of laser speckle flowgraphy (LSFG) for retinal blood flow (RBF) measurement in 20 eyes of wild type (C57BL/6J) mice and effect of intravitreal Aflibercept on RBF in optic nerve head (ONH) region of 10 eyes of Ins2 (Akita) diabetic mice.
Methods: 'Mean blur rate (MBR)' was measured for all quadrants of tissue area (MT), vessel (MV) and total area (MA) of ONH region. Changes in MT were analysed at each timepoint.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!