Cardiomyopathy is often fatal in Friedreich ataxia (FA). However, FA hearts maintain adequate function until advanced disease stages, suggesting initial adaptation to the loss of frataxin (FXN). Conditional cardiac knockout mouse models of FXN show transcriptional and metabolic profiles of the mitochondrial integrated stress response (ISRmt), which could play an adaptive role. However, the ISRmt has not been investigated in models with disease-relevant, partial decrease in FXN. We characterized the heart transcriptomes and metabolomes of three mouse models with varying degrees of FXN depletion: YG8-800, KIKO-700 and FXNG127V. Few metabolites were changed in YG8-800 mice, which did not provide a signature of cardiomyopathy or ISRmt; several metabolites were altered in FXNG127V and KIKO-700 hearts. Transcriptional changes were found in all models, but differentially expressed genes consistent with cardiomyopathy and ISRmt were only identified in FXNG127V hearts. However, these changes were surprisingly mild even at advanced age (18 months), despite a severe decrease in FXN levels to 1% of those of wild type. These findings indicate that the mouse heart has low reliance on FXN, highlighting the difficulty in modeling genetically relevant FA cardiomyopathy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10581388 | PMC |
http://dx.doi.org/10.1242/dmm.050114 | DOI Listing |
J Cereb Blood Flow Metab
January 2025
Multidisciplinary Brain Protection Program (MBPP), Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA.
Cardiac arrest (CA) is a life-threatening condition that requires immediate medical attention. Considerable advances in resuscitation have led to an increasing number of patients who survive the initial arrest event. However, among this growing patient population, morbidity and mortality rates remain strikingly high.
View Article and Find Full Text PDFCirc Res
January 2025
Division of Cardiology, Department of Medicine, Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, PA. (R.A.C., C.C.C., R.W., A.C., C.B., C.R., W.J.M., M.J. Bashline, A.P., A.M.P., P.B., M.J. Brown, C.S.H.).
Background: Calcific aortic valve disease is the pathological remodeling of valve leaflets. The initial steps in valve leaflet osteogenic reprogramming are not fully understood. As TERT (telomerase reverse transcriptase) overexpression primes mesenchymal stem cells to differentiate into osteoblasts, we investigated whether TERT contributes to the osteogenic reprogramming of valve interstitial cells.
View Article and Find Full Text PDFGut Microbes
December 2025
Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland.
, non-typhoidal spp., and enteropathogenic/enterohemorrhagic (EPEC/EHEC) are leading causes of food-borne illness worldwide. has been used to model EPEC and EHEC infection in mice.
View Article and Find Full Text PDFFront Public Health
January 2025
School of Mathematics, Statistics, and Computer Science, University of Kwazulu-Natal, Pietermaritzburg, South Africa.
Background: Malaria and anemia are significant public health concerns that contribute to child mortality in African. Despite global efforts to control the two diseases, their prevalence in high-risk regions like Nigeria remains high. Understanding socioeconomic, demographic, and geographical factors associated with malaria and anemia, is critical for effective intervention strategies.
View Article and Find Full Text PDFJ Inflamm Res
January 2025
Department of Pain Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530007, People's Republic of China.
Purpose: Intestinal ischemia-reperfusion injury (IIRI) occurs as a result of temporary blood flow interruption, leading to tissue damage upon reperfusion. Oxidative stress plays a critical role in this process, instigating inflammation and cell death. Identifying and characterizing genes associated with the oxidative stress response can offer valuable insights into potential therapeutic targets for managing IIRI.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!