Background: Fine particulate matter (PM2.5) has been inconsistently associated with breast cancer incidence, however, few studies have considered historic exposure when levels were higher.
Methods: Outdoor residential PM2.5 concentrations were estimated using a nationwide spatiotemporal model for women in the National Institutes of Health-AARP Diet and Health Study, a prospective cohort located in 6 states (California, Florida, Louisiana, New Jersey, North Carolina, and Pennsylvania) and 2 metropolitan areas (Atlanta, GA, and Detroit, MI) and enrolled in 1995-1996 (n = 196 905). Annual average PM2.5 concentrations were estimated for a 5-year historical period 10 years prior to enrollment (1980-1984). We used Cox regression to estimate adjusted hazard ratios (HRs) and 95% confidence intervals (CIs) for the association between a 10 µg/m3 increase in PM2.5 and breast cancer incidence overall and by estrogen receptor status and catchment area.
Results: With follow-up of participants through 2017, a total of 15 870 breast cancer cases were identified. A 10 ug/m3 increase in PM2.5 was statistically significantly associated with overall breast cancer incidence (HR = 1.08, 95% CI = 1.02 to 1.13). The association was evident for estrogen receptor-positive (HR = 1.10, 95% CI = 1.04 to 1.17) but not estrogen receptor-negative tumors (HR = 0.97, 95% CI = 0.84 to 1.13; Pheterogeneity = .3). Overall breast cancer hazard ratios were more than 1 across the catchment areas, ranging from a hazard ratio of 1.26 (95% CI = 0.96 to 1.64) for North Carolina to a hazard ratio of 1.04 (95% CI = 0.68 to 1.57) for Louisiana (Pheterogeneity = .9).
Conclusions: In this large US cohort with historical air pollutant exposure estimates, PM2.5 was associated with risk of estrogen receptor-positive breast cancer. State-specific estimates were imprecise but suggest that future work should consider region-specific associations and the potential contribution of PM2.5 chemical constituency in modifying the observed association.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11045029 | PMC |
http://dx.doi.org/10.1093/jnci/djad170 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!