Objectives: MR imaging-based proton density fat fraction (PDFF) and T2* imaging has shown to be useful for the evaluation of degenerative changes in the spine. Therefore, the aim of this study was to investigate the influence of myelotoxic chemotherapy on the PDFF and T2* of the thoracolumbar spine in comparison to changes in bone mineral density (BMD).

Methods: In this study, 19 patients were included who had received myelotoxic chemotherapy (MC) and had received a MR imaging scan of the thoracolumbar vertebrates before and after the MC. Every patient was matched for age, sex, and time between the MRI scans to two controls without MC. All patients underwent 3-T MR imaging including the thoracolumbar spine comprising chemical shift encoding-based water-fat imaging to extract PDFF and T2* maps. Moreover, trabecular BMD values were determined before and after chemotherapy. Longitudinal changes in PDFF and T2* were evaluated and compared to changes in BMD.

Results: Absolute mean differences of PDFF values between scans before and after MC were at 8.7% (p = 0.01) and at -0.5% (p = 0.57) in the control group, resulting in significantly higher changes in PDFF in patients with MC (p = 0.008). BMD and T2* values neither showed significant changes in patients with nor in those without myelotoxic chemotherapy (p = 0.15 and p = 0.47). There was an inverse, yet non-significant correlation between changes in PDFF and BMD found in patients with myelotoxic chemotherapy (r = -0.41, p = 0.12).

Conclusion: Therefore, PDFF could be a useful non-invasive biomarker in order to detect changes in the bone marrow in patients receiving myelotoxic therapy.

Clinical Relevance Statement: Using PDFF as a non-invasive biomarker for early bone marrow changes in oncologic patients undergoing myelotoxic treatment may help enable more targeted countermeasures at commencing states of bone marrow degradation and reduce risks of possible fragility fractures.

Key Points: Quantifying changes in bone marrow fat fraction, as well as T2* caused by myelotoxic pharmaceuticals using proton density fat fraction, is feasible. Proton density fat fraction could potentially be established as a non-invasive biomarker for early bone marrow changes in oncologic patients undergoing myelotoxic treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10957695PMC
http://dx.doi.org/10.1007/s00330-023-10189-yDOI Listing

Publication Analysis

Top Keywords

bone marrow
24
fat fraction
20
pdff t2*
20
myelotoxic chemotherapy
20
changes
12
marrow changes
12
proton density
12
density fat
12
changes bone
12
changes pdff
12

Similar Publications

The biology centered around the TGF-beta type I receptor Activin Receptor-Like Kinase (ALK)1 (encoded by ACVRL1) has been almost exclusively based on its reported endothelial expression pattern since its first functional characterization more than two decades ago. Here, in efforts to better define the therapeutic context in which to use ALK1 inhibitors, we uncover a population of tumor-associated macrophages (TAMs) that, by virtue of their unanticipated Acvrl1 expression, are effector targets for adjuvant anti-angiogenic immunotherapy in mouse models of metastatic breast cancer. The combinatorial benefit depended on ALK1-mediated modulation of the differentiation potential of bone marrow-derived granulocyte-macrophage progenitors, the release of CD14+ monocytes into circulation, and their eventual extravasation.

View Article and Find Full Text PDF

B-cell acute lymphoblastic leukemia (B-ALL) is the most common form of cancer diagnosed in children. While the majority of patients survive with conventional treatment, chemotherapeutic agents have adverse effects and the potential for relapse persists even after full recovery. Given their pivotal function in anti-cancer immunity, there has been a surge in research exploring the potential of natural killer (NK) cells in immunotherapy, which has emerged as a promising avenue for treating leukemia.

View Article and Find Full Text PDF

Purpose: Despite advances in the treatment of adult acute lymphoblastic leukemia (ALL), relapse remains the most significant challenge in improving prognosis. Measurable residual disease (MRD) assessment can predict bone marrow relapse based on MRD positivity. As access to innovative therapies remains limited because of the high cost, chemotherapy is the widely utilized treatment option.

View Article and Find Full Text PDF

MircoRNAs predict and modulate responses to chemotherapy in leukemic patients.

Naunyn Schmiedebergs Arch Pharmacol

January 2025

Oral Biology Department, Faculty of Dentistry, Galala Plateau, Galala University, 15888), Attaka, Suez Governorate, Egypt.

Leukemia covers a broad category of cancer malignancies that specifically affect bone marrow and blood cells. While different kinds of leukemia have been identified, effective treatments are still lacking for most forms, and even those treatments considered effective can lead to relapses. MicroRNAs, or miRNAs, are short endogenous non-coding single-stranded RNAs that help control the epigenetics of gene expression.

View Article and Find Full Text PDF

CD9/SOX2-positive cells in the intermediate lobe of the rat pituitary gland exhibit mesenchymal stem cell characteristics.

Cell Tissue Res

January 2025

Laboratory of Anatomy and Cell Biology, Department of Health Sciences, Kyorin University, 5-4-1 Shimorenjaku, Mitaka, Tokyo, 181-8612, Japan.

Adult tissue stem cells of the anterior pituitary gland, CD9/SOX2-positive cells, are believed to exist in the marginal cell layer (MCL) bordering the residual lumen of the Rathke's pouch. These cells migrate from the intermediate lobe side of the MCL (IL-MCL) to the anterior lobe side of the MCL and may be involved in supplying hormone-producing cells. Previous studies reported that some SOX2-positive cells of the anterior lobe differentiate into skeletal muscle cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!