Almost 60% of all ammonia (NH) emissions are from livestock manure. Understanding the sources and magnitude of NH emissions from manure systems is critical to implement mitigation strategies. This study models 13 archetypical conventional (5 farms), organic (5 farms), and grazing (3 farms) dairy farms to estimate NH emissions from manure at the barn, storage, and after land application. Mitigation practices related to management of the herd, crop production, and manure are subsequently modeled to quantify the change in NH emissions from manure by comparing archetypical practices with these alternative practices. A mass balance of nutrients is also conducted. Emissions per tonne of excreted manure for the manure system (barn, storage, and land application) range from 3.0 to 4.4 g of NH for conventional farms, 3.5 to 4.4 g of NH for organic farms, and 3.4 to 3.9 g of NH for grazing farms. For all farm types, storage and land application are the main sources of NH emissions from manure. In general, solid manures have higher emission intensities due to higher pH during storage (pH = 7.4 for liquid, 7.8 for slurry, and 8.5 for solid manure) and lower infiltration rates after land application when compared with slurry and liquid manures. The most effective management practices to reduce NH emissions from manure systems are combining solid-liquid separation with manure injection (up to 49% reduction in NH emissions), followed by injection alone, and reducing crude protein in the dairy ration, especially in organic and grazing farms that have grazing and forages as the main component of the dairy ration. This study also shows that the intensity of NH emissions from manure depends significantly on the functional unit and presents results per manure excreted, total solids in excreted manure, animal units, and fat- and protein-corrected milk.

Download full-text PDF

Source
http://dx.doi.org/10.3168/jds.2023-23782DOI Listing

Publication Analysis

Top Keywords

emissions manure
28
land application
16
manure
15
farms grazing
12
grazing farms
12
storage land
12
emissions
11
ammonia emissions
8
organic grazing
8
manure systems
8

Similar Publications

In this study, the effect of additives on particulate matter (PM) and flue gas emissions during the co-combustion of poultry waste and pine woodchips in air and oxy-fuel combustion conditions was examined. The appropriate additive for the fuel mixture to reduce PM emissions has been selected by a fast screening method based on thermogravimetric analysis (TGA) in oxygen environment. Among the additives CaHPO, MgCO, MnCO, MgPO, kaolin, CaO, and Zn, the most suitable ones were determined as Zn and MgCO.

View Article and Find Full Text PDF

Anaerobic digestion (AD) technology offers significant advantages in addressing environmental issues arising from the intensification of livestock production since it enables waste reduction and energy recovery. However, the molecular composition of dissolved organic matter (DOM) and its linkages to microbial biodiversity during the industrial-scale AD process of chicken manure (CM) remains unclear. In this study, the chemical structure of CM digestate-derived DOM was characterized by using multi-spectroscopic techniques and ultrahigh-resolution mass spectrometry, and the microbial composition was detected by using 16S rRNA gene sequencing.

View Article and Find Full Text PDF

Characteristics identification and mitigating potentials of provincial gaseous reactive nitrogen emissions from livestock and poultry breeding systems in China.

J Environ Manage

January 2025

College of Environmental Science and Engineering, Key Laboratory of Beijing on Regional Air Pollution Control, Beijing University of Technology, Beijing, 100124, China.

The growth of population and changes in dietary structure have led to a continuous increase in demand for livestock and poultry products, resulting in the increase of the gaseous reactive nitrogen (GNr) emissions from livestock and poultry breeding systems and posing a threat to the human and ecosystem health. The characteristics from GNr emissions of six livestock and poultry breeding systems at the provincial level of China in 2020 were evaluated with the framework of life cycle analysis. Additionally, this study explored the impact of silage maize replacing traditional maize as feed on reducing GNr emissions.

View Article and Find Full Text PDF

This study investigated the effects of different protein sources on feed intake, nutrient, and energy utilization, growth performance, and enteric methane (CH4) emissions in growing beef cattle, also evaluated against a pasture-based diet. Thirty-two Holstein × Angus growing beef were allocated to four dietary treatments: a total mixed ration (TMR) including solvent-extracted soybean meal as the main protein source (SB; n = 8), TMR with local brewers' spent grains (BSG; n = 8), TMR with local field beans (BNS; n = 8), and a diet consisting solely of fresh-cut Italian ryegrass (GRA; n = 8). Every four weeks, animals were moved to digestibility stalls within respiration chambers to measure nutrient intakes, energy and nitrogen (N) utilization, and enteric CH4 emissions.

View Article and Find Full Text PDF

As farming practices evolve and climate conditions shift, achieving sustainable food production for a growing global population requires innovative strategies to optimize environmentally friendly practices and minimize ecological impacts. Agroecosystems, which integrate agricultural practices with the surrounding environment, play a vital role in maintaining ecological balance and ensuring food security. Rhizosphere management has emerged as a pivotal approach to enhancing crop yields, reducing reliance on synthetic fertilizers, and supporting sustainable agriculture.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!