Preparation of polyhydroxyalkanoate-based magnetic microspheres for carbonyl reductase purification and immobilization.

Int J Biol Macromol

College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province, Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Institute of Life Science and Green Development, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei University, Baoding 071002, China. Electronic address:

Published: December 2023

A polyhydroxyalkanoate (PHA) magnetic microsphere was designed for one-step purification and immobilization of a novel carbonyl reductase (RLSR5) from recombinant Escherichia coli lysate. The hydrophobic core of this microsphere was composed of a highly biocompatible polymer, poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx), in which magnetic FeO particles were embedded during solvent evaporation. The hydrophilic shell of the fusion protein formed by PHA particle-binding protein (PhaP) and RLSR5 (PR) was expressed in recombinant E. coli. The magnetic core of FeO@PHBHHx directly purified the hydrophilic shell from the E. coli lysate, and the two self-assembled to form FeO@PHBHHx-PR through hydrophobic and hydrophilic interactions, eliminating the separation of the fusion protein. The microstructure, magnetic properties, morphology, size, and dispersion of FeO@PHBHHx-PR were investigated by XRD, VSM, SEM, TEM, elemental mapping and DLS. It was found that FeO@PHBHHx-PR correctly assembled, with a well dispersed spherical structure at the nanoscale and superparamagnetism properties. The amount of RLSR5 immobilized on PHA microspheres reached 121.9 mg/g. The FeO@PHBHHx-PR was employed to synthesize (R)-tolvaptan with 99 % enantiomeric excess and 97 % bioconversion efficiency, and the catalyst maintained 78.6 % activity after 10 recovery cycles. These PHA magnetic microspheres are versatile carriers for enzyme immobilization and demonstrate improved stability and reusability of the free enzyme.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2023.126814DOI Listing

Publication Analysis

Top Keywords

magnetic microspheres
8
carbonyl reductase
8
purification immobilization
8
pha magnetic
8
coli lysate
8
hydrophilic shell
8
fusion protein
8
magnetic
6
preparation polyhydroxyalkanoate-based
4
polyhydroxyalkanoate-based magnetic
4

Similar Publications

, an active component of Arnebia euchroma (Royle) Johnst., has remarkable pharmacological effects, particularly in its anti-tumour activity. Nonetheless, the specific targets and mechanisms of action remain to be further explored.

View Article and Find Full Text PDF

Preparation of Magnetic Hemicellulosic Composite Microspheres and Adsorption of Copper Ions.

Polymers (Basel)

December 2024

Research Centre of Advanced Chemical Engineering, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, China.

In this study, the fabrication of magnetic hemicellulosic composite microspheres and the adsorption of copper ions are explored. The microspheres were prepared by the micro-emulsion technique, using FeO nanoparticles and hemicellulose extracted from wheat straw with the ionic liquid B[mim]Cl as a solvent. FeO nanoparticles, synthesized through coprecipitation, were evenly encapsulated within the hemicellulosic microspheres.

View Article and Find Full Text PDF

Nanozymes open up new avenues for amplifying signals in photoelectrochemical (PEC) biosensing, which are yet limited by the generated small-molecule signal reporters. Herein, a multifunctional nanoenzyme of Pt NPs/CoSAs@NC consisting of Co single atoms on N-doped porous carbon decorated with Pt nanoparticles is successfully synthesized for cascade catalytic polymerization of dopamine for constructing a highly sensitive photocurrent-polarity-switching PEC biosensing platform. Taking protein tyrosine phosphatase 1B (PTP1B) as a target model, Pt NPs/CoSAs@NC nanoenzymes are linked to magnetic microspheres via phosphorylated peptides.

View Article and Find Full Text PDF

The synthesis of an iron tailings-based geopolymer with synergistic electromagnetic wave consumption property.

Environ Res

January 2025

School of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China; Zijin School of Geology and Mining, Fuzhou University, Fuzhou, Fujian, 350108, China; Fujian Key Laboratory of Green Extraction and High-value Utilization of Energy Metals, Fuzhou University, Fuzhou, Fujian 350108, China.

In this study, combination of wave absorption materials with different loss mechanisms are added into iron ore tailings-blast furnace slag (IOT-BFS) based geopolymers. The employed materials are hollow glass microsphere (HGM), carbon nanotubes (CNT) and carbonyl iron powder (CIP). Microstructures of the geopolymers are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and concrete porous structure analyzer.

View Article and Find Full Text PDF

Dual-signal portable microRNA biosensor based on a photothermal/visual strategy induced by cascading amplification techniques and horseradish peroxidase.

Talanta

January 2025

Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding 071002, Hebei Province, PR China. Electronic address:

MicroRNAs (miRNAs) serve as potential biomarkers for many diseases such as cancer, neurodegenerative diseases and cardiovascular conditions. The portable and accurate detection of miRNA is of great significance for the early diagnosis, treatment optimization and prognostic evaluation of diseases. Herein, a photothermal/visual dual-mode assay for let-7a is developed utilizing oxidized 3, 3', 5, 5' - tetramethylbenzidine (oxTMB) as signal reporter.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!