The collective economic and environmental interest of the whole dairy sheep sector is to reduce feed costs and the negative impact of milk production on the environment. Thus, this study focused on the characterisation and genetic selection potential of feed efficiency in the Lacaune breed. Estimates for feed efficiency in dairy ewes are limited, mainly due to a lack of individual feed intake measurements in the sheepfold or in the pasture. We estimated the genetic parameters for two approximated (not entirely based on individual data) feed efficiency traits (lactation feed conversion ratio (LFCR) and residual energy intake (REI)) and daily milk yield (DMY) at different stages of lactation and throughout lactation. The accuracy of the efficiency traits was first evaluated on samples from Lacaune dairy ewes that were monitored individually, especially for their feed intake. Then, feed efficiency estimation methods were applied on eight commercial farms corresponding to 4 680 Lacaune dairy ewes over two milk lactations (30 854 records). Animals were collectively (for a large part of feed intake) or individually (for milk performance and dynamics of body fat reserves) monitored at different lactation stages. The heritabilities of LFCR and REI were estimated over lactations at 0.10 ± 0.01 and 0.11 ± 0.01, respectively. High genetic correlations were observed between the two efficiency traits and milk production traits, with a genetic correlation between LFCR and DMY of 0.74 ± 0.04 and between REI and DMY of -0.79 ± 0.04. A strong influence of environmental factors such as farm, year of milk production and lactation stage affected the genetic link between REI and milk production traits. Efficiency values observed in early lactation when animals were bred in the sheepfold were less genetically correlated with values obtained later in lactation when animals were grass-fed. However, individual characterisation of feed efficiency remains difficult due to the collective feeding context in dairy ewe farms.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.animal.2023.100951DOI Listing

Publication Analysis

Top Keywords

feed efficiency
24
milk production
16
dairy ewes
12
feed intake
12
efficiency traits
12
feed
11
efficiency
9
lactation
8
dairy sheep
8
lacaune dairy
8

Similar Publications

Transcriptomic and proteomic analysis reveals the mechanism of chicken cecum response to serovar Enteritidis inoculation.

iScience

January 2025

College of Animal Science and Technology, Shandong Provincial Key Laboratory for Livestock Germplasm Innovation & Utilization, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taián 271017, Shandong, China.

serovar Enteritidis (SE) incurs foodborne illnesses and poses a severe threat to poultry industry and human health. However, the molecular mechanisms underlying chicken responding to SE inoculation remain elusive. Here, we characterized the transcriptome and proteome of chicken cecum 3 days post SE inoculation.

View Article and Find Full Text PDF

Slowly digestible starch impairs growth performance of broiler chickens offered low-protein diet supplemental higher amino acid densities by inhibiting the utilization of intestinal amino acid.

J Anim Sci Biotechnol

January 2025

Department of Animal Nutrition and Feed Science, State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.

Background: The synchronized absorption of amino acids (AAs) and glucose in the gut is crucial for effective AA utilization and protein synthesis in the body. The study investigated how the starch digestion rate and AA levels impact intestinal AA digestion, transport and metabolism, breast muscle protein metabolism, and growth in grower broilers. A total of 720 21-day-old healthy male Arbor Acres Plus broilers were randomly assigned to 12 treatments, each with 6 replicates of 10 birds.

View Article and Find Full Text PDF

Polymeric coatings that combine resistance to adhesion ("defending") and killing ("attacking") of biocontaminants were proposed to endow the surface with nonadhesive and bactericidal capabilities. In contrast, a zwitterionic copolymer P(GMA--DMAPS) with antifouling groups ([2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl)ammonium hydroxide, DMAPS) and a zwitterionic/cationic copolymer P(GMA--DMAPS--DMC) with bactericidal groups ([2-(methacryloyloxy)ethyl]trimethylammonium chloride, DMC) were synthesized, of which the latter exhibited synergistic inhibitory and killing properties. The distinct feed ratios of monomers were conducted, and the optimal molar ratio was obtained.

View Article and Find Full Text PDF

Rapeseed ( L.) is known for its high-quality seed oil and protein content. However, its use in animal feed is restricted due to antinutritional factors present in the seedcake, with sinapine being one of the main compounds that reduces palatability.

View Article and Find Full Text PDF

Microalgae have garnered a considerable attention as a sustainable substitute as customary feed ingredients for poultry, predominantly due to their extraordinary nutritive profile and purposeful properties. These minuscule organisms are protein rich, retain an ample quantity of essential fatty acids, vitamins, minerals, and antioxidants, thus are capable of improving nutritive value of poultry diets. Microalgae comparatively delivers an outstanding source of protein containing substantial amount of innumerable bioactive complexes, omega-3 fatty acids in addition to the essential amino acids (methionine and lysine), crucial for optimal growth and development.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!