FePO (FP) particles with a mesoporous structure amalgamated by nanoscale primary crystals were controllably prepared using an ultrasound-intensified turbulence T-junction microreactor (UTISR). The use of this type of reaction system can effectively enhance the micro-mixing and remarkably improve the mass transfer and chemical reaction rates. Consequently, the synergistic effects of the impinging streams and ultrasonic irradiation on the formation of mesoporous structure of FP nanoparticles have been systematically investigated through experimental validation and CFD simulation. The results revealed that the FP particles with a mesoporous structure can be well synthesised by precisely controlling the operation parameters by applying ultrasound irradiation with the input power in the range of 0-900 W and the impinging stream volumetric flow rate in the range of 17.15-257.22 mL·min. The findings obtained from the experimental observation and CFD modelling has clearly indicated that there exists a strong correlation between the particle size, morphology, and the local turbulence shear. The application of ultrasonic irradiation can effectively intensify the local turbulence shear in the reactor even at low Reynolds number based on the impinging stream diameter (Re < 2000), leading to an effective reduction in the particle size (from 273.48 to 56.1 nm) and an increase in the specific surface area (from 21.97 to 114.97 m·g) of FP samples. The FPirregularly-shaped particles prepared by UTISR exhibited a mesoporous structure with a particle size of 56.10 nm, a specific surface area of 114.97 m·gand a total pore adsorption volume of 0.570 cm·g when the volumetric flow rate and ultrasound power are 85.74 mL·minand 600 W, respectively.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10498309 | PMC |
http://dx.doi.org/10.1016/j.ultsonch.2023.106590 | DOI Listing |
Impact of climate change that stems from gaseous emissions require sustainable materials to eliminate sulfur. This study involves the modification of humic acid with magnetite nanoparticles (Fe₃O₄ NPs) by a microwave-assisted synthesis of an absorbent with reasonable pore volume and diameter for elimination of thiophenic compounds from fuel. The magnetic nano adsorbent designated Fe3O4@HA was characterized using advanced spectroscopic techniques, while their structure and morphology were analyzed through DLS, XPS, XRD, FT-IR, TGA, FESEM-EDX, VSM, and BET-N2 techniques.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160 Shengli South Street, Yinchuan 750004, PR China.
The structural disruption of intestinal barrier and excessive reactive oxygen/nitrogen species (RONS) generation are two intertwined factors that drive the occurrence and development of ulcerative colitis (UC). Synchronously restoring the intestinal barrier and mitigating excess RONS is a promising strategy for UC management, but its treatment outcomes are still hindered by low drug accumulation and retention in colonic lesions. Inspired by intestine colonizing bacterium, we developed a mucoadhesive probiotic -mimic entinostat-loaded hollow mesopores prussian blue (HMPB) nanotherapeutic (AM@HMPB@E) for UC-targeted therapy via repairing intestinal barrier and scavenging RONS.
View Article and Find Full Text PDFAdv Mater
January 2025
Michael Grätzel Center for Mesoscopic Solar Cells Wuhan National Laboratory for Optoelectronics Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China.
Carbon-based printable mesoscopic solar cells (p-MPSCs) offer significant advantages for industrialization due to their simple fabrication process, low cost, and scalability. Recently, the certified power conversion efficiency of p-MPSCs has exceeded 22%, drawing considerable attention from the community. However, the key challenge in improving device performance is achieving uniform and high-quality perovskite crystallization within the mesoporous structure.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China.
The combination of photosensitizers (PSs) and nanomaterials is a widely used strategy to enhance PS efficacy and broaden their applicability. However, the current nanocarrier-based delivery strategies focus on conventional PSs, neglecting the critical issue of PS phototoxicity. In this study, DHUOCl-25, an activatable PS (aPS) activated by hypochlorous acid, is synthesized by combining a silicon source structure and an activation unit.
View Article and Find Full Text PDFACS Med Chem Lett
January 2025
Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing 211198, China.
In this study, hollow mesoporous silica nanoparticles (HMSN) coated with a 4T1 tumor cell membrane were used to construct biomimetic nanomaterials (DTX@CHMSN) for the treatment of breast cancer. The nanodrug can improve the water solubility of polyenetaxel (DTX) by taking advantage of the special structure, good biocompatibility, and adjustable surface chemical properties of HMSN. Hollow mesoporous silica nanoparticles are coated with 4T1 cell membranes derived from homologous tumors (CHMSN).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!