Development of an inflammation modulating polypropylene (PP) mesh in pelvic floor repair is an urgent clinical need. This is because PP mesh for pelvic floor repair can cause a series of complications related to foreign body reactions (FBR) in postoperative period. Therefore, we successfully prepared PP composite mesh that can scavenge reactive oxygen species (ROS) and inhibit inflammation to moderate FBR by a simple method. First, a pregel layer was formed on PP mesh by dip coating. Among them, polyurethane with polythioketal (PTK) is an excellent ROS scavenger, and dopamine methacrylamide (DMA) improves the stability of the coating and synergistically scavenges ROS. Then, a composite mesh (optimal PU50-PP) was obtained by photopolymerization. The results showed that the polyurethane gel layer was able to scavenge more than 90% of free radicals and about 75% of intracellular ROS. In vitro, PU50-PP mesh significantly scavenged ROS and resisted macrophage adhesion. After implantation in the posterior vaginal wall of rats, PU50-PP eliminated 53% of ROS, inhibited inflammation (decreased IL-6, increased IL-10), and dramatically reduced collagen deposition by about 64%, compared to PP mesh. Thus, the composite PP mesh with ROS scavenging and anti-inflammatory properties provides a promising approach for mitigating FBR.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.colsurfb.2023.113518 | DOI Listing |
ChemSusChem
January 2025
Department of Chemical Engineering, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, Drienerlolaan 5, 7522 NB, Enschede, The, Netherlands.
A niobium (Nb) mesh electrode was coated with boron-doped diamond (BDD) using chemical vapor deposition in a custom-built hot-filament reactor. The BDD-functionalized mesh was tested in a zero-gap electrolysis configuration and evaluated for the anodic formation of HO by selective oxidation of water, including the analysis of the effects on Faradaic efficiency towards HO (FEH2O2) induced by pulsed electrolysis. A low electrolyte flow rate (V⋅) was found to result in a relatively high concentration of HO in single-pass electrolysis experiments.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
University Centre for Energy Efficient Buildings, Czech Technical University in Prague, 27343 Buštěhrad, Czech Republic.
This paper introduces cross-wound CFRP shear reinforcement of hollow HPC beams. The CFRP reinforcement was manufactured in the form of a square tubular mesh from carbon rovings oriented at ±45° from the longitudinal axis. The shear reinforcement was made in two variants from carbon yarns with linear densities of 1600 and 3700 tex.
View Article and Find Full Text PDFMar Pollut Bull
January 2025
Department of Ocean Sciences, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-Ku, Tokyo 108-8477, Japan. Electronic address:
In this study, environmental microplastic samples (>30 μm) were collected from surface seawater and the water column, characterized, and used to assess ecological risks. The influence of mesh selectivity on ecological risks was also evaluated through subsampling. Results show that surface microplastic concentrations (>30 μm) range from 92 to 3306 pieces/m along Japan's southwest coast, with significant increases at Stas.
View Article and Find Full Text PDFJ Ethnopharmacol
January 2025
Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, 150040, China. Electronic address:
Ethnopharmacological Relevance: Cuttlebone (CB), also known as SEPIAE ENDOCONCHA, is the inner shell of cuttlefish and has been employed in traditional medicine in numerous countries since antiquity. Despite its significant medicinal value, CB is often underestimated and discarded on the beach as debris in some countries, which considerably impacts the environment and economy.
The Aim Of The Review: This study aims to elucidate the value of CB, particularly in the context of its medicinal properties, to promote its rational utilization.
ACS Appl Mater Interfaces
January 2025
State Key Laboratory of Organic-Inorganic Composites, School of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
With significantly high lithium-ion (Li) transport efficiency, single-ion conducting polymer electrolytes (SIPEs) often suffer from low ionic conductivity due to the covalently bonded anions to the polymer backbone. Adding plasticizers to SIPEs to improve ionic conductivity usually reduces the polymer matrix's mechanical robustness, negatively affecting overall performance as solid electrolytes. Herein, to surpass such a trade-off relationship, we successfully designed a single-ion conducting composite membrane (c-SIPM60) with cross-linked linear SIPEs and incorporated glass-mesh substrate, which shows a cation transport number close to 1, ultrahigh tensile strength of 22 MPa (modulus of 547.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!