Background: According to the cognitive-reserve concept, higher educated dementia patients tolerate more brain pathology than lower educated patients with similar impairment. Here, we examined whether higher education is associated with more severe dopamine terminal loss at the diagnosis of Parkinson's disease (PD).

Methods: Dopamine transporter (DaT) SPECT information of 352 de novo PD patients and 172 healthy controls (HC) were retrieved from PPMI. Correlation analyses were performed between education years and regional DaT signal (i.e., putamen, caudate, striatum), correcting for UPDRS-III, age, sex and MoCA. Second, using a median split on education (Md = 16 yrs), high and low education groups were determined, which were matched for demographic and/or clinical scores and compared based on regional DaT signals. Finally, moderation analyses were conducted in the PD cohort, assessing the effect of education on the relation between putaminal DaT capacity and UPDRS-III. All analyses were performed across the entire cohorts and separately for three age ranges (sixth, seventh and eighth life decade).

Results: Only PD patients in their eighth life decade presented a positive association between education and regional dopamine signalling. A significant moderation effect of education on the association between putaminal DaT signal loss and motor symptom severity was observed in this group (B=3.377, t=3.075, p = .003). The remaining analyses did not yield any significant results, neither in the PD nor HC cohort.

Conclusion: Higher education is not related with greater tolerance against dopamine loss in PD, but may nonetheless assert protective effects at more advanced age.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.parkreldis.2023.105844DOI Listing

Publication Analysis

Top Keywords

dopamine transporter
8
parkinson's disease
8
education
8
higher education
8
analyses performed
8
regional dat
8
dat signal
8
putaminal dat
8
eighth life
8
dopamine
5

Similar Publications

Age-related dopamine (DA) neuron loss is a primary feature of Parkinson's disease. However, whether similar biological processes occur during healthy aging, but to a lesser degree, remains unclear. We therefore determined whether midbrain DA neurons degenerate during aging in mice and humans.

View Article and Find Full Text PDF

Amphetamines (AMPHs) are psychostimulants commonly used for the treatment of neuropsychiatric disorders. They are also misused (AMPH use disorder; AUD), with devastating outcomes. Recent studies have implicated dysbiosis in the pathogenesis of AUD.

View Article and Find Full Text PDF

Background: This study investigates the protective properties of melatonin in an Parkinson's disease (PD) model, focusing on the underlying mechanisms involving heat shock proteins (HSPs).

Methods: Twelve adult male C57BL/6 mice were randomly divided into four groups (normal control, melatonin control, Parkinson's model, and melatonin treatment; = 3 per group) and housed in a single cage. 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) was injected intraperitoneally in the Parkinson's model and treatment groups to establish a subacute PD model, while controls received saline.

View Article and Find Full Text PDF

Identification of N,N-dimethylpentylone (DMP) in counterfeit "Ecstasy" and "Molly" tablets poses risk to public health due to its adverse effects. Little information is available regarding the pharmacological activity or relevant blood or tissue concentrations of DMP, and even less is known about other structurally related beta-keto methylenedioxyamphetamine analogues on recreational drug markets, such as N-propyl butylone. Here, a novel toxicological assay utilizing liquid chromatography-tandem quadrupole mass spectrometry (LC-QQQ-MS) was developed and validated for the quantitation of DMP and five related synthetic cathinones (eutylone, pentylone, N-ethyl pentylone (NEP), N-propyl butylone, and N-cyclohexyl butylone), with chromatographic resolution from isomeric variants and quantitation performed by standard addition.

View Article and Find Full Text PDF

Genetic and neurochemical profiles underlying cortical morphometric vulnerability to Parkinson's disease.

Brain Res Bull

January 2025

Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. Electronic address:

Background: Increasing evidence has documented cortical involvement at all stages of PD. The local vulnerabilities within certain brain regions in PD have been previously demonstrated, whereas its underlying genetic and neurochemical factors remain unclear. This study aims to investigate the spatial spectrum of cortical atrophy in Parkinson's disease (PD) and link these variances in gray matter properties and curvature respectively to putative molecular pathways and neurotransmitter factors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!