Cobalt is an alternative catalyst for furfural hydrogenation but suffers from the strong binding of H and furan ring on the surface, resulting in low catalytic activity and chemoselectivity. Herein, by constructing a Pd-Co interface in cobalt oxide-supported Pd catalysts to tailor the d-band center of Co, the concerted effort of Pd and Co boosts the catalytic performance for the hydroconversion of furfural to cyclopentanone and cyclopentanol. The increased dispersion of Pd on acid etching CoO promotes the reduction of Co to Co by enhancing hydrogen spillover, favoring the creation of the Pd-Co interface. Both experimental and theoretical calculations demonstrate that the electron transfer from Pd to Co at the interface results in the downshift of the d-band center of Co atoms, accompanied by the destabilization of H and furan ring adsorption on the Co surface, respectively. The former improves the furfural hydrogenation with TOF on Co elevating from 0.20 to 0.62 s, and the latter facilitates the desorption of formed furfuryl alcohol from the Co surface for subsequently hydrogenative rearrangement of the furan ring to cyclopentanone on acid sites. The resultant Pd/CoO-6 catalyst delivers superior activity with a 99% furfural conversion and 85% overall selectivity toward cyclopentanone/cyclopentanol. We anticipate that such a concept of tailoring the d-band center of Co via interface engineering provides novel insight and feasible approach for the design of highly efficient catalysts for furfural hydroconversion and beyond.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.3c09234 | DOI Listing |
J Am Chem Soc
January 2025
School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, Beihang University, Beijing 100191, China.
The dual-site synergistic catalytic mechanism on NiFeOOH suggests weak adsorption of Ni sites and strong adsorption of Fe sites limited its activity toward alkaline oxygen evolution reaction (OER). Large-scale density functional theory (DFT) calculations confirm that Co doping can increase Ni adsorption, while the metal vacancy can reduce Fe adsorption. The combined two factors can further modulate the atomic environment and optimize the free energy toward oxygen-containing intermediates, thus enhancing the OER activity.
View Article and Find Full Text PDFAdv Mater
January 2025
Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin, 300071, China.
As promising bifunctional electrocatalysts, transition metal nitrides are expected to achieve an efficient hydrazine oxidation reaction (HzOR) by fine-tuning electronic structure via strain engineering, thereby facilitating hydrogen production. However, understanding the correlation between strain-induced atomic microenvironments and reactivity remains challenging. Herein, a generalized compressive strained W-NiN catalyst is developed to create a surface with enriched electronic states that optimize intermediate binding and activate both water and NH.
View Article and Find Full Text PDFACS Nano
January 2025
School of Chemistry and Chemical Engineering, Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.
Due to the simultaneous activation of hydrogen peroxide (HO) and oxygen, Ru nanocrystals exhibit inherent peroxidase- and oxidase-like activities, thereby limiting their extensive application in biosensing. Phase engineering of Ru nanocrystals holds great promise for enhancing catalytic activity and selectivity but remains a challenge. Here, highly active Ru nanocrystals with a metastable face-centered cubic (fcc) structure were successfully synthesized via a facile wet-chemical method followed by an etching step, enabling selective activation of HO and demonstrating promising peroxidase-like activity.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong 266042, China; Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong 266042, China. Electronic address:
A universal theory for predicting the catalytic activity of hydrolytic nanozymes has yet to be developed. Herein, by investigating the polarization and hydrolysis mechanisms of nanomaterials towards amide bonds, carbocation charge was identified as a key electronic descriptor for predicting catalytic activity in amide hydrolysis. Through machine learning correlation analysis and the Sure Independence Screening and Sparsifying Operator (SISSO) algorithm, this descriptor was interpreted to associate with the d-band center and Lewis acidity on the nanomaterial surface.
View Article and Find Full Text PDFWater Res
December 2024
Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China. Electronic address:
Activation of HO cleavage for H* production by defect engineering eliminates the insufficient supply of protons in the NORR process under neutral conditions. However, it remains challenging to precisely control the defect formation for optimizing the equilibrium between H* production and H* binding. Here, we propose a strategy to boost defect generation through S-doping induced NiFe-LDH lattice distortion, and successfully optimize the balance of H* production and binding.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!