A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Insights on biotic and abiotic 2,4-dichlorophenoxyacetic acid degradation by anaerobic iron-cycling bacteria. | LitMetric

The use of the phenoxy herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) has been steadily increasing in recent years due to its selectivity against broad-leafed weeds and use on genetically modified crops resistant to 2,4-D. This increases the likelihood of 2,4-D persisting in agriculturally impacted soils, sediments, and aquatic systems. Aerobic microorganisms are capable of degrading 2,4-D enzymatically. Anaerobic degradation also occurs, though the enzymatic pathway is unclear. Iron-reducing bacteria (FeRB) have been hypothesized to augment anaerobic degradation through the production of a chemically reactive Fe(II) adsorbed to Fe(III) oxyhydroxides. To test whether this iron species can catalyze abiotic degradation of 2,4-D, an enrichment culture (BLA1) containing a photosynthetic Fe(II)-oxidizing bacterium (FeOB) "Candidatus Chlorobium masyuteum" and the FeRB "Candidatus Pseudopelobacter ferreus", both of which lacked known 2,4-D degradation genes was investigated. BLA1 produces Fe(II)-adsorbed to Fe(III) oxyhydroxides during alternating photoautotrophic iron oxidation and dark iron reduction (amended with acetate) cycles. No 2,4-D degradation occurred during iron oxidation by FeOB Ca. C. masyuteum or during iron reduction by FeRB Ca. P. ferreus under any incubation conditions tested (i.e., +/-Fe(II), +/-cells, and +/-light), or due to the presence of Fe(II) adsorbed to Fe(III) oxyhydroxides. Our results cast doubt on the hypothesis that the mineral-bound Fe(II) species augments the anaerobic degradation of 2,4-D in anoxic soils and waters by iron-cycling bacteria, and further justify the need to identify the genetic underpinnings of anaerobic 2,4-D degradation.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jeq2.20513DOI Listing

Publication Analysis

Top Keywords

anaerobic degradation
12
feiii oxyhydroxides
12
24-d degradation
12
24-d
9
24-dichlorophenoxyacetic acid
8
degradation
8
iron-cycling bacteria
8
feii adsorbed
8
adsorbed feiii
8
degradation 24-d
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!