Introduction of chlorogenic acid into thermal processed starch- oleic acid system controls the ordered structure and inhibits oleic acid oxidation through molecular interactions.

Food Res Int

School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou 510640, China. Electronic address:

Published: October 2023

In this study, the effects of starch- oleic acid (OA)- chlorogenic acid (CA) molecular interaction on OA oxidation during thermal processing were investigated based on structural analysis, oxidation characteristics and quantum calculations. The results showed that in the ternary system, on the one hand, OA could enter the spiral cavity of starch through hydrophobic forces and form V-type crystalline structure, which delayed its oxidation. On the other hand, CA could further inhibit the oxidation of OA through free radical reaction and did not affect the molecular interactions between OA and starch due to the steric hindrance and hydrophily. Notably, starch-OA-CA interactions could effectively decrease total oxidation value (19.07), prolong the induction time of oxidation (114.6 min) and reduce the abundance of oxidation products through hydrogen atom transfer reactions with active phenolic hydroxyl to protect the α-methylene groups at C=C. Overall, these results provided insights into functional property regulation by the interaction of starch-based multi-component systems.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodres.2023.113164DOI Listing

Publication Analysis

Top Keywords

oleic acid
12
chlorogenic acid
8
starch- oleic
8
oxidation
8
molecular interactions
8
acid
5
introduction chlorogenic
4
acid thermal
4
thermal processed
4
processed starch-
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!