A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Characterization and stability investigation of rhein encapsulated microcapsules using different enteric biopolymers with pullulan and Jiuzao glutelin conjugates via Maillard reaction. | LitMetric

The poor water solubility and rhein (RH) stability limit its application in the functional food industry. In the present study, the RH-loaded water-in-oil-in-water nano emulsion and microcapsules were prepared using the conjugates of pullulan-Jiuzao glutelin (JG) (m/m, 2:1, PJC-2) obtained by Maillard reaction and enteric-soluble materials (polymethlacrylic acid, hydroxypropyl methylcellulose phthalate, cellulose acetate phthalate, and D-mannitol). The effects of different formulations on the microstructure, physicochemical properties, and storage stability of microcapsules were analyzed. The results showed that microcapsules exhibited stability against different external environments. The encapsulation efficiency of RH in the four enteric-soluble-PJC-2 double-deck microcapsules (70.03 ± 3.24%-91.08 ± 4.78%) was significantly improved than PJC-2 ones (61.84 ± 0.47%). The antioxidant activity and stability of RH in the microcapsules were improved (ABTS, 49.7%-113.93%; DPPH, 40.85%-101.82%; FRA, 62.32%-126.42%; and FCA, 70.58%-147.20%) after in vitro simulated digestion and extreme environmental conditions compared to free RH. This work provides a microcapsule based on PJC-2 with enteric-soluble materials for insoluble functional ingredients to improve solubility, stability, and bioactivity in the food industry.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodres.2023.113135DOI Listing

Publication Analysis

Top Keywords

maillard reaction
8
food industry
8
enteric-soluble materials
8
stability microcapsules
8
microcapsules
6
stability
5
characterization stability
4
stability investigation
4
investigation rhein
4
rhein encapsulated
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!