A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Performance of rice protein hydrolysates as a stabilizing agent on oil-in-water emulsions. | LitMetric

Performance of rice protein hydrolysates as a stabilizing agent on oil-in-water emulsions.

Food Res Int

Department of Food Engineering and Technology, School of Food Engineering, University of Campinas, 13083-862 Campinas, SP, Brazil. Electronic address:

Published: October 2023

Rice protein isolate (RPI) has been receiving increasing attention from the food industry due to its performance as an emulsifier. However, it is possible to enlarge its field of applications through enzymatic hydrolysis. Therefore, this work aimed to investigate the effects of the controlled enzymatic hydrolysis (degree of hydrolysis DH as 2, 6, and 10%) using Flavourzyme on the physicochemical properties of rice protein and to identify the minimum concentration of these hydrolysates (0.5, 1.0, and 1.5%) to form and stabilize oil/water emulsion. The physicochemical, interfacial tension (IT), and surface characteristics of RPI and their hydrolysates (RPH) were determined. Even at a lower protein concentration (1.0%), protein hydrolysate presented lower IT when compared with RPI at a higher protein concentration (1.5%). The interfacial tension decreased from 17.6 mN/m to 9.9 mN/m when RPI was hydrolyzed. Moreover, enzymatic hydrolysis (DH 6 and 10%) enhanced the protein solubility by almost 20% over a pH range of 3-11. The improved amphiphilic property of RPH, supported by the results of IT and solubility, was confirmed by the higher emulsion stability indicated by the Turbiscan and emulsion stability indexes. Emulsions stabilized by RPH (DH 6% and 10%) at lower protein concentrations (1%) exhibited better physical stability than RPI at higher protein concentrations (1.5%). In this work, we verified the minimum concentration of rice protein hydrolysate required to form and stabilize oil-in-water (O/W) emulsions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodres.2023.113099DOI Listing

Publication Analysis

Top Keywords

rice protein
16
enzymatic hydrolysis
12
protein
10
hydrolysis 10%
8
minimum concentration
8
form stabilize
8
interfacial tension
8
lower protein
8
protein concentration
8
protein hydrolysate
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!