There is an arms race between beta-lactam antibiotics development and co-evolving beta-lactamases, which provide resistance by breaking down beta-lactam rings. We have observed that certain beta-lactamases tend to aggregate, which persists throughout their evolution under the selective pressure of antibiotics on their active sites. Interestingly, we find that existing beta-lactamase active site inhibitors can act as molecular chaperones, promoting the proper folding of these resistance factors. Therefore, we have created Pept-Ins, synthetic peptides designed to exploit the structural weaknesses of beta-lactamases by causing them to misfold into intracellular inclusion bodies. This approach restores sensitivity to a wide range of beta-lactam antibiotics in resistant clinical isolates, including those with Extended Spectrum variants that pose significant challenges in medical practice. Our findings suggest that targeted aggregation of resistance factors could offer a strategy for identifying molecules that aid in addressing the global antibiotic resistance crisis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10492782PMC
http://dx.doi.org/10.1038/s41467-023-41191-zDOI Listing

Publication Analysis

Top Keywords

beta-lactam antibiotics
8
resistance factors
8
exploiting aggregation
4
aggregation propensity
4
beta-lactamases
4
propensity beta-lactamases
4
beta-lactamases design
4
design inhibitors
4
inhibitors induce
4
induce enzyme
4

Similar Publications

Rationale and Logistics of Continuous Infusion Cephalosporin Antibiotics.

Pharmacy (Basel)

December 2024

Department of Pharmacy, Prisma Health Richland, 5 Medical Park Drive, Columbia, SC 29203, USA.

Cephalosporins have traditionally been administered as an intermittent infusion. With the knowledge that cephalosporins demonstrate a time-dependent pharmacodynamic profile, administration via continuous infusion may provide more effective antibiotic exposure for successful therapy. Proposed benefits of administration via continuous infusion include less IV manipulation, decreased potential for antibiotic resistance, and potential cost savings.

View Article and Find Full Text PDF

High-dose methotrexate (HDMTX) chemotherapy is associated with a significant risk of acute kidney injury (AKI). Acetazolamide is thought to increase methotrexate solubility via urinary alkalinisation, potentially reducing the risk of crystalline nephropathy. A tertiary hospital has included acetazolamide in its HDMTX protocols, although data on the risks and benefits are limited.

View Article and Find Full Text PDF

The expression of Klebsiella pneumoniae carbapenemase (KPC), a type of carbapenem-hydrolyzing β-lactamase, in Gram-negative bacteria has caused significant bacterial resistance to carbapenems, the antibiotic of last resort. Herein, we describe the discovery of 2-carboxyquinoline boronic acids as inhibitor of KPC. We have identified fluoro-substituted carboxyquinoline boronic acids 1e as the most potent inhibitor, with an IC50 of 8.

View Article and Find Full Text PDF

Simultaneous determination of three β-Lactam/β-lactamase inhibitor combinations in critically ill patients by UPLC-MS/MS.

J Chromatogr B Analyt Technol Biomed Life Sci

December 2024

Department of Pharmacy, China-Japan Friendship Hospital, Beijing 100029, China. Electronic address:

β-Lactam/β-lactamase inhibitors (BL/BLIs) are widely used in critically ill patients. Recent research has shown the importance of therapeutic drug monitoring (TDM) of BLs, but few studies have highlighted the importance of detecting BLIs in critically ill patients. In our laboratory, we have developed and validated a simple and robust method for the determination of ceftazidime, cefoperazone, piperacillin, avibactam, sulbactam and tazobactam in human plasma by ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!