Surfactants in water and wastewater (greywater): Environmental toxicity and treatment options.

Chemosphere

School of Environment and Natural Resources, Doon University, Dehradun, Uttarakhand, 248012, India. Electronic address:

Published: November 2023

Surfactant, an emerging pollutant present in greywater, raises the toxicity levels in the water body. Soap, detergent, and personal care items add surfactant to greywater. Due to excessive washing and cleaning procedures brought on by the COVID-19 pandemic, the release of surfactants in greywater has also increased. Considering the environmental toxicity and problems it creates during the treatment, it's essential to remove surfactants from the wastewater. This review intends to explain and address the environmental toxicity of the surfactant released via greywater and current techniques for surfactant removal from wastewater. Various physical, chemical, and biological methods are reported. Modern adsorbents such as hydrophilic silica nanoparticles, chitosan, fly ash, and iron oxide remove surfactants by adsorption. Membrane filtration effectively removes surfactants but is not cost-effective. Coagulants (chemical and natural coagulants) neutralize surfactant charges and help remove them as bigger particles. Electrocoagulation/electroflotation causes surfactants to coagulate and float. Microorganisms break down surfactants in microbial fuel cells to generate power. Surfactants are removed by natural processes and plants in constructed wetlands where traditional aerobic and anaerobic approaches use microbes to break down surfactants. Constructed wetlands, natural coagulation-flocculation, and microbial fuel cells are environmentally beneficial methods to remove surfactants from wastewater.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2023.140082DOI Listing

Publication Analysis

Top Keywords

environmental toxicity
12
remove surfactants
12
surfactants
10
surfactants wastewater
8
break surfactants
8
microbial fuel
8
fuel cells
8
constructed wetlands
8
greywater
5
surfactant
5

Similar Publications

The extensive application of graphene nanosheets (GNSs) has raised concerns over risks to sensitive species in the aquatic environment. The humic acid (HA) corona is traditionally considered to reduce GNSs toxicity. Here, we evaluate the effect of sorbed HA (GNSs-HA) on the toxicity of GNSs to Gram positive Bacillus tropicus.

View Article and Find Full Text PDF

Prevalence of lipophilic phycotoxins with different forms in the benthic environments of a typical mariculture bay.

Mar Environ Res

December 2024

Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China.

Lipophilic phycotoxins (LPTs) are toxic and lipophilic secondary metabolites produced by toxic microalgae, which pose a serious threat to marine shellfish culture industries. LPTs were systematically investigated in bottom seawater, suspended particulate matter (SPM), sediment, and sediment porewater of Laizhou Bay, a typical mariculture bay in China, to understand the chemical diversity and environment behaviors of LPTs in the benthic environments. Okadaic acid (OA), pectenotoxin-2 (PTX2), dinophysistoxin-1 (DTX1), azaspiracid-2 (AZA2), gymnodimine (GYM), pectenotoxin-2 seco acid (PTX2 SA), 7-epi- pectenotoxin-2 seco acid (7-epi-PTX2 SA), 13-desmethylspirolide C (SPX1), yessotoxin (YTX) and homo YTX (h-YTX) were detected in the benthic environment of Laizhou Bay in spring, indicating that LPTs are rich in chemical diversity.

View Article and Find Full Text PDF

Development of a novel ICT-ESIPT-based NIR ratiometric fluorescent probe for specific detection of Hg in the environment and living organisms.

Spectrochim Acta A Mol Biomol Spectrosc

December 2024

School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China. Electronic address:

As a heavy metal contaminant, mercury ion (Hg) has caused great harm to environment and life. Mercury ions will migrate and transform in the environment and eventually accumulate in the human body, thus causing human poisoning. Therefore, it is of great significance to detect Hg in the environment and living bodies.

View Article and Find Full Text PDF

Per- and poly-fluoroalkyl substances (PFAS) have emerged as a silent menace, infiltrating groundwater systems worldwide. Many countries, preoccupied with tackling legacy pollutants, have inadvertently neglected the emerging threat of PFAS. This review provides an exhaustive analysis beyond the current state of knowledge and sustainable pathways vis-a-vis addressing PFAS in groundwater systems globally.

View Article and Find Full Text PDF

Bacterial biomineralization of heavy metals and its influencing factors for metal bioremediation.

J Environ Manage

January 2025

Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India. Electronic address:

Increasing industrial pollution and certain hazardous agricultural practices have led to the discharge of heavy toxic metals into the environment. Among different bioremediation techniques, biomineralization is the synthesis of biomineral crystals extracellularly or intracellularly. Several bacteria, such as Bacillus cereus, Pseudomonas stutzeri, Bacillus subtilis, and Lactobacillus sphaericus have been found to induce heavy metal precipitation and mineralization for bioremediation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!