Discovery of novel indazole derivatives as SOS1 agonists that activate KRAS signaling.

Bioorg Med Chem

Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006 Guangzhou, Guangdong, PR China. Electronic address:

Published: October 2023

KRAS serves as a vital regulator for cellular signaling and drives tumor pathogenesis after mutation. Despite extensive research efforts spanning several decades, targeting KRAS is still challenging due to the multiple KRAS mutations and the emergence of drug resistance. Interfering the interactions between KRAS and SOS1 is one of the promising approaches for modulating KRAS functions. Herein, we discovered small-molecule SOS1 agonists with novel indazole scaffold. Through structure-based optimization, compound 11 was identified with high SOS1 activation potency (p-ERK EC = 1.53 μM). In HeLa cells, compound 11 enhances cellular RAS-GTP levels and exhibits biphasic modulation of ERK1/2 phosphorylation through an on-target mechanism and presents the therapeutic potential to modulate RAS signaling by activating SOS1.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmc.2023.117457DOI Listing

Publication Analysis

Top Keywords

novel indazole
8
sos1 agonists
8
kras
6
sos1
5
discovery novel
4
indazole derivatives
4
derivatives sos1
4
agonists activate
4
activate kras
4
kras signaling
4

Similar Publications

Discovery of 4,5-dihydro-benzo[g]indazole-based hydroxamic acids as HDAC3/BRD4 dual inhibitors and anti-tumor agents.

Eur J Med Chem

December 2024

Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China. Electronic address:

Concurrent inhibition of HDAC and BRD4, two well-established epigenetic targets for anti-tumor therapy, demonstrates the potential to enhance anti-tumor effects synergistically. The present study involves the development of a series of novel HDAC3/BRD4 dual inhibitors, followed by evaluation of their antitumor efficacy against several tumor models. Guided by scaffold hopping strategy, key pharmacophore of BRD4 inhibitor I-BET-151 was incorporated into an in-house developed HDAC3-selective inhibitor 17h.

View Article and Find Full Text PDF

The long shot.

Science

December 2024

An injectable HIV drug with a novel mechanism shows remarkable ability to prevent infection.

View Article and Find Full Text PDF

Structure of Plasmodium vivaxN-myristoyltransferase with inhibitor IMP-1088: exploring an NMT inhibitor for antimalarial therapy.

Acta Crystallogr F Struct Biol Commun

January 2025

Chemistry and Biochemistry Department, Hampton University, 200 William R. Harvey Way, Hampton, VA 23668, USA.

Plasmodium vivax, a significant contributor to global malaria cases, poses an escalating health burden on a substantial portion of the world's population. The increasing spread of P. vivax because of climate change underscores the development of new and rational drug-discovery approaches.

View Article and Find Full Text PDF

Effects of ERK1/2 Inhibitors on the Growth of Acute Leukemia Cells.

Anticancer Res

December 2024

Department of Laboratory Medicine, Institute of Science Tokyo, Tokyo, Japan

Background/aim: Extracellular signal-regulated kinases (ERK)1/2 are important regulatory proteins that control cell proliferation and survival, playing a significant role in cancer progression, metastasis, and chemoresistance. This study investigated the effects of ERK1/2 inhibitors on the in vitro growth of acute leukemia cell lines.

Materials And Methods: Three ERK1/2 inhibitors were used: SCH772984, temuterkib (LY3214996), and ulixertinib (BVD-523).

View Article and Find Full Text PDF

Myxofibrosarcoma (MFS) is one of the most common soft-tissue sarcomas in elderly patients. Owing to the limited efficacy of chemotherapy and radiotherapy, complete resection is the only available curative treatment. Therefore, developing novel therapies for MFS is important to improve clinical outcomes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!