The cavitation dynamics of a two-bubble system in viscoelastic media excited by dual-frequency ultrasound is studied numerically with a focus on the effects of inter-bubble interactions. Compared to the isolated bubble cases, the enhancement or suppression effects can be exerted on the amplitude and nonlinearity of the bubble oscillations to different degrees. Moreover, the interaction effects are found to be highly sensitive to multiple paramount parameters related to the two-bubble system, the dual-frequency ultrasound and the medium viscoelasticity. Specifically, the larger bubble of a two-bubble system shows a stronger effect on the smaller one, and this effect becomes more pronounced when the larger bubble undergoes harmonic and/or subharmonic resonances as well as the two bubbles get closer (e.g., d < 100 μm). For the influences of the dual-frequency excitation, the results show that the bubbles can achieve enhanced harmonic and/or subharmonic oscillations as the frequency combinations with small frequency differences (e.g., Δf < 0.2 MHz) close to the corresponding resonance frequencies of bubbles, and the interaction effects are consequently intensified. Similarly, the bubble oscillations and the interaction effects can also be enhanced as the acoustic pressure amplitude of each frequency component is equal and the pressure amplitude p increases. Above a pressure threshold (p = 215 kPa), a larger bubble undergoes period 2 (P2) oscillations, which can force a smaller bubble to change its oscillation pattern from period 1 (P1) into P2 oscillations. In addition, it is found that the medium viscosity dampens the bubble oscillations while the medium elasticity affects the bubble resonances, accordingly exhibiting stronger interaction effects at smaller viscosities (e.g., μ < 4 mPa·s) or certain elasticities (approximately G = 70-120 kPa, G = 160-200 kPa and G = 640-780 kPa) at which the bubble resonances occur. The study can contribute to a better understanding of the complex dynamic behaviors of interacting cavitation bubbles in viscoelastic tissues for high efficient cavitation-mediated biomedical applications using dual-frequency ultrasound.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10498094 | PMC |
http://dx.doi.org/10.1016/j.ultsonch.2023.106586 | DOI Listing |
Ultrasonics
December 2024
Department of Physics, Concordia University, Montreal, Quebec H4B 1R6, Canada; Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada. Electronic address:
Clinical ultrasound contrast agent microbubbles remain intravascular and are between 1-8 µm in diameter, with a volume-weighted mean size of 2-3 µm. Despite their worldwide clinical utility as a diagnostic contrast agent, and their continued and ongoing success as a local therapeutic vector, the fundamental interplay between microbubbles - including bubble-bubble interaction and the effects of a neighboring viscoelastic vessel wall, remain poorly understood. In this work, we developed a finite element model to study the physics of the complex system of two different-sized bubbles (2 and 3 µm in diameter) confined within a viscoelastic vessel from a resonance response perspective (3-12 MHz).
View Article and Find Full Text PDFUltrason Sonochem
March 2024
Department of Ultrasound, Chongqing General Hospital, Chongqing, People's Republic of China. Electronic address:
Ultrasound technology has been extensively used as one of the efficient and economic methodology to achieve the desired outcomes in many applications by harnessing the physico-chemical effects of acoustic cavitation. However, the cavitation-associated effects, primarily determined by the oscillatory dynamics of cavitation bubbles, are considerably complex and still remain poorly understood. The main objective of this study was to perform a numerical analysis of the acoustic cavitation (i.
View Article and Find Full Text PDFUltrason Sonochem
January 2024
Department of Physics, Concordia University, Montreal, Quebec H4B 1R6, Canada; Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada. Electronic address:
Phospholipid encapsulated ultrasound contrast agents have proven to be a powerful addition in diagnostic imaging and show emerging applications in targeted therapy due to their resonant and nonlinear scattering. Microbubble response is affected by their intrinsic (e.g.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2023
Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, Orsay 91405, France.
Coarsening of two-phase systems is crucial for the stability of dense particle packings such as alloys, foams, emulsions, or supersaturated solutions. Mean field theories predict an asymptotic scaling state with a broad particle size distribution. Aqueous foams are good model systems for investigations of coarsening-induced structures, because the continuous liquid as well as the dispersed gas phases are uniform and isotropic.
View Article and Find Full Text PDFUltrason Sonochem
October 2023
Chongqing Engineering Research Center of Medical Electronics and Information Technology, Department of Biomedical Engineering, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, People's Republic of China. Electronic address:
The cavitation dynamics of a two-bubble system in viscoelastic media excited by dual-frequency ultrasound is studied numerically with a focus on the effects of inter-bubble interactions. Compared to the isolated bubble cases, the enhancement or suppression effects can be exerted on the amplitude and nonlinearity of the bubble oscillations to different degrees. Moreover, the interaction effects are found to be highly sensitive to multiple paramount parameters related to the two-bubble system, the dual-frequency ultrasound and the medium viscoelasticity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!