Octahedral CuO nanomaterials as electrochemical aptasensor for sensitive detection of tetracycline in milk.

Spectrochim Acta A Mol Biomol Spectrosc

School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China. Electronic address:

Published: January 2024

In this work, A novel label-free electrochemical biosensor based on octahedral CuO @ Au nanocomposites was developed for the detection of tetracycline. The gold nanoparticles (AuNPs) on the surface of CuO nanomaterials not only improve the electrochemical performance, but also can be used as a binding site for thiol-modified tetracycline aptamers, which can specifically bind to tetracycline. CuO @ Au nanocomposites provide a synergistic effect of electrochemical signal amplification and tetracycline recognition strategy. Under the optimal conditions, the proposed biosensor exhibited different electrochemical reactions for different concentrations of tetracycline, with a linear range of 1 nM-1000 μM and a detection limit of 0.16 nM. This work provides a new idea for rapid and sensitive detection of tetracycline by using a simple and economical tetracycline aptamer combined with CuO @ Au biosensor platform.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2023.123361DOI Listing

Publication Analysis

Top Keywords

detection tetracycline
12
octahedral cuo
8
cuo nanomaterials
8
sensitive detection
8
tetracycline
8
cuo nanocomposites
8
electrochemical
5
nanomaterials electrochemical
4
electrochemical aptasensor
4
aptasensor sensitive
4

Similar Publications

Tetracycline (TC) is widely used in veterinary medicine and animal feed; however, TC residues in food pose a risk to human health. Thus, the sensitive and selective detection of TC is needed to ensure food safety. Herein, we developed a CRISPR-Cas12a biosensor with competitive aptamer binding to detect TC residues.

View Article and Find Full Text PDF

A competitive dual-mode for tetracycline antibiotics sensing based on colorimetry and surface-enhanced Raman scattering.

Biosens Bioelectron

December 2024

State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, 214122, Wuxi, Jiangsu, People's Republic of China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 214122, Wuxi, Jiangsu, People's Republic of China; International Joint Laboratory on Food Safety, Jiangnan University, 214122, Wuxi, Jiangsu, People's Republic of China. Electronic address:

Tetracycline antibiotics (TCs) are extensively used as broad-spectrum antimicrobials. However, their excessive use and misuse have led to serious accumulation in foods and environments, posing a significant threat to human health. To solve such public issue, we have designed a novel dual-mode detection method, integrating colorimetric sensing with surface-enhanced Raman scattering (SERS) technology, for sensitive and rapid evaluation on TCs.

View Article and Find Full Text PDF

This study introduces an innovative bio-based sorbent bead crafted by integrating chitosan (CS) biopolymers, Fe(NO3)3 and polydopamine nanoparticles (PDA NPs) via glutaraldehyde crosslinking. The primary focus of this study was the concurrent separation of diverse tetracycline antibiotics (TCs), followed by rigorous reversed-phase liquid chromatography analysis. The fabricated CS/Fe@PDA sorbent beads were comprehensively characterized using scanning electron microscopy and energy-dispersive X-ray spectroscopy, revealing a surface rich in active carbon (C), nitrogen (N), and oxygen (O) moieties.

View Article and Find Full Text PDF

Group B Streptococcus (GBS) or Streptococcus agalactiae is a pathogen that causes infections during pregnancy. The aim of this study was to investigate the antibiotic sensitivity profiles, capsule genotypes and biofilm forming capabilities of GBS isolates obtained from pregnant women . The study included 252 pregnant women who applied to Adana Gynecology and Children's Hospital between 2018 and 2023.

View Article and Find Full Text PDF

Clonal dissemination of methicillin-resistant Staphylococcaceae between Algerian sheep farms.

J Glob Antimicrob Resist

December 2024

Division of Molecular Bacterial Epidemiology & Infectious Diseases, Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Switzerland. Electronic address:

Objectives: Sheep farming represents an important economic sector in Algeria, and the potential dissemination of methicillin-resistant Staphylococcaceae (MRS) is a critical veterinary and public health concern. This study aimed to determine the prevalence and types of MRS in ovine in Algeria and characterize them using whole-genome sequencing (WGS) analysis.

Methods: Two hundred sheep from twenty different Algerian farms across three regions were screened for nasal colonization with MRS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!