A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Confinement-enhanced microalgal individuals biosensing for digital atrazine assay. | LitMetric

Confinement-enhanced microalgal individuals biosensing for digital atrazine assay.

Biosens Bioelectron

School of Physics & Technology, Department of Clinical Laboratory, Institute of Translational Medicine, Institute of Medicine and Physics, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China; Shenzhen Research Institute, Wuhan University, Shenzhen 518000, China. Electronic address:

Published: December 2023

Microalgal sensors are widely recognized for their high sensitivity, accessibility, and low cost. However, the current dilemma of motion-induced spatial phase changes and concentration-related multiple scattering interferes with induced test instability and limited sensitivity, which has hindered their practical applications. Here, a differentiated strategy, named confinement-enhanced microalgal biosensing (C-EMB), is developed and proposed to pave the way. The in-situ printed microgel trap is designed to confine Chlamydomonas reinhardtii individuals, stabilizing their spatial phase. The microgel trap arrays are introduced to eliminate the multiple scattering of microalgae, breaking the existing effective concentration in traditional microalgal sensing and enabling sensitive assays. The integration with lab-on-a-chip technology and a developed digital imaging algorithm empower portable and automated detection. With this system, a microalgae analyzer is developed for atrazine detection, featuring a linear range of 0.04-100 μg/L. We assess the system's performance through practical atrazine assays on commercial food, using a double-blind test against a standard instrument. Our results demonstrate the good accuracy and test stability of this system with the mean bias atrazine detection in corn and sugarcane juice samples (SD) were 1.661 μg/L (3.122 μg/L) and 3.144 μg/L (4.125 μg/L), respectively. This method provides a new paradigm of microalgal sensors and should advance the further applications of microalgal sensors in commercial and practical settings.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2023.115647DOI Listing

Publication Analysis

Top Keywords

microalgal sensors
12
confinement-enhanced microalgal
8
spatial phase
8
multiple scattering
8
microgel trap
8
atrazine detection
8
microalgal
5
microalgal individuals
4
individuals biosensing
4
biosensing digital
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!