Polymeric curcumin nanospheres for lysozyme aggregation inhibition, antibacterial, and wound healing applications.

Environ Sci Pollut Res Int

Nanomaterials for Drug Delivery and Therapeutics (NDT-Lab), Centre for Nano and Material Science, Jain University, Jain Global Campus, Bengaluru, 562112, Karnataka, India.

Published: July 2024

The present study reports highly stable polymeric nanoparticles comprising curcumin and polyvinylpyrrolidone, and then conjugated with gold nanoparticles, resulting in C-PVP and C-PVP-Au, respectively. The synthesized conjugates C-PVP and C-PVP-Au were investigated for amyloid aggregation inhibition activity, antimicrobial activity, and wound healing applications. The anti-amyloidogenic capacity of nanoconjugates were studied for model protein, hen egg-white lysozyme (HEWL). The ThT binding assay, fibril size measurement, and electron microscopy results revealed that conjugates suppress fibrillogenesis in HEWL. The highest amyloid inhibition activity obtained against C-PVP and C-PVP-Au was 31 μg.mL and 30 μg.mL, respectively. The dissociation activity for amyloid aggregation was observed against Q-PVP and Q-PVP-Au at 29 μg.mL and 27 μg.mL, respectively. The antibacterial studies show significant efficacy against Escherichia coli (E. coli) in the presence of C-PVP and C-PVP-Au. The substantial antibacterial potential of C-PVP@PVA and C-PVP-Au@PVA membranes shows promising wound healing applications. The PVA membranes with nanoparticles promote the antibacterial activity and wound healing activity in the Drosophila model. C-PVP-Au@PVA membrane healed the wound faster than the C-PVP@PVA, and it can be used for better results in wound healing. Thus, C-PVP-Au and C-PVP have higher bioavailability and stability and can act as multifunctional therapeutic agents for amyloid-related diseases and as wound healing agents. Graphical abstract C-PVP, and C-PVP-Au conjugates for inhibition of HEWL aggregation, antibacterial and wound healing activity.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-023-29160-xDOI Listing

Publication Analysis

Top Keywords

wound healing
28
c-pvp c-pvp-au
20
aggregation inhibition
8
wound
8
antibacterial wound
8
healing applications
8
amyloid aggregation
8
inhibition activity
8
activity wound
8
healing activity
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!