Aim: Gestational diabetes mellitus (GDM) affects a significant number of women worldwide and has been associated with lifelong health consequences for their offspring, including increased susceptibility to obesity, insulin resistance, and type II diabetes. Recent studies have suggested that aberrant expression of the long non-coding RNA Meg3 in the liver may contribute to impaired glucose metabolism in individuals. In this study, we aimed to investigate whether intrauterine exposure to hyperglycemia affects glucose intolerance in puberty by mediating the overexpression of LncMeg3 in the liver.
Methods: To test our hypothesis, we established an animal model of intrauterine hyperglycemia to mimic GDM. The progeny was observed for phenotypic changes, and intraperitoneal glucose tolerance tests, insulin tolerance tests, and pyruvate tolerance tests were conducted to assess glucose and insulin tolerance. We also measured LncMeg3 expression in the liver using real-time quantitative PCR and examined differential methylation areas (DMRs) in the Meg3 gene using pyrophosphoric sequencing. To investigate the role of LncMeg3 in glucose tolerance, we conducted Meg3 intervention by vein tail and analyzed the changes in the phenotype and transcriptome of the progeny using bioinformatics analysis.
Results: We found that intrauterine exposure to hyperglycemia led to impaired glucose and insulin tolerance in the progeny, with a tendency toward increased fasting blood glucose in fat offspring at 16 weeks (P = 0.0004). LncMeg3 expression was significantly upregulated (P = 0.0061), DNMT3B expression downregulated (P = 0.0226), and DNMT3A (P = 0.0026), TET2 (P = 0.0180) expression upregulated in the liver. Pyrophosphoric sequencing showed hypomethylation in Meg3-DMRs (P = 0.0005). Meg3 intervention by vein tail led to a decrease in the percentage of obese and emaciated offspring (emaciation: 44% vs. 23%; obesity: 25% vs. 15%) and attenuated glucose intolerance. Bioinformatics analysis revealed significant differences in the transcriptome of the progeny, particularly in circadian rhythm and PPAR signaling pathways.
Conclusion: In conclusion, our study suggests that hypomethylation of Meg3-DMRs increases the expression of the imprinted gene Meg3 in the liver of males, which is associated with impaired glucose tolerance in GDM-F1. MEG3 interference may attenuate glucose intolerance, which may be related to transcriptional changes. Our findings provide new insights into the mechanisms underlying the long-term effects of intrauterine hyperglycemia on progeny health and highlight the potential of Meg3 as an intervention target for glucose intolerance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00592-023-02169-x | DOI Listing |
J Agric Food Chem
January 2025
Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
Plant-based foods with low methionine contents have gained increasing interest for their potential health benefits, including neuroprotective effects. Methionine restriction (MR) linked to a plant-based diet has been shown to mitigate neurodegenerative diseases such as Alzheimer's disease (AD) through mechanisms that involve the gut microbiota. In this study, a 16-week MR diet (0.
View Article and Find Full Text PDFGut Microbes
December 2025
School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, China.
Diabetes mellitus (DM) is a complex metabolic disease characterized by hyperglycemia. Recently, the incidence of diabetes has increased exponentially, and it is estimated to become the seventh leading cause of global mortality by 2030. Glucagon-like peptide-1 (GLP-1), a hormone derived from the intestine, has been demonstrated to exert remarkable hypoglycemic effects.
View Article and Find Full Text PDFBone
December 2024
Marrow Adiposity and Bone Lab, MABLab-ULR4490, Univ. Littoral Côte d'Opale F-62200 Boulogne-sur-Mer, Univ. Lille F-59000 Lille, CHU Lille, F-59000 Lille, France. Electronic address:
Obesity is a risk factor of developing type 2 diabetes (T2D) and metabolic complications, through systemic inflammation and insulin resistance. It has also been associated with increased bone marrow adipocytes along with increased bone fragility and fracture risk. However, the differential effects of obesity and T2D on bone fragility remain unclear.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.
Front Endocrinol (Lausanne)
January 2025
Islet Biology and Metabolism Lab - IBM Lab, Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina - UFSC, Florianópolis, Santa Catarina, Brazil.
Aims: This study investigates the role of Hepatocyte Nuclear Factor 4α (HNF4α) in the adaptation of pancreatic β-cells to an HFD-induced obesogenic environment, focusing on β cell mass expansion and metabolic adaptations.
Main Methods: We utilized an HNF4α knockout (KO) mouse model, with CRE-recombinase enzyme activation confirmed through tamoxifen administration. KO and Control (CTL) mice were fed an HFD for 20 weeks.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!