Exposure to toxicants/stressors has been linked to the development of many human diseases. They could affect various cellular components, such as DNA, proteins, lipids, and non-coding RNAs (ncRNA), thereby triggering various cellular pathways, particularly oxidative stress, inflammatory responses, and apoptosis, which can contribute to pathophysiological states. Accordingly, modulation of these pathways has been the focus of numerous investigations for managing related diseases. The involvement of various ncRNAs, such as small interfering RNA (siRNA), microRNAs (miRNA), and long non-coding RNAs (lncRNA), as well as various proteins and peptides in mediating these pathways, provides many target sites for pharmaceutical intervention. In this regard, various oligonucleotide- and protein/peptide-based therapies have been developed to treat toxicity-induced diseases, which have shown promising results in vitro and in vivo. This comprehensive review provides information about various aspects of toxicity-related diseases including their causing factors, main underlying mechanisms and intermediates, and their roles in pathophysiological states. Particularly, it highlights the principles and mechanisms of oligonucleotide- and protein/peptide-based therapies in the treatment of toxicity-related diseases. Furthermore, various issues of oligonucleotides and proteins/peptides for clinical usage and potential solutions are discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00210-023-02683-3DOI Listing

Publication Analysis

Top Keywords

oligonucleotide- protein/peptide-based
12
non-coding rnas
8
pathophysiological states
8
protein/peptide-based therapies
8
toxicity-related diseases
8
diseases
6
potential oligonucleotide-
4
protein/peptide-based therapeutics
4
therapeutics management
4
management toxicant/stressor-induced
4

Similar Publications

Exposure to toxicants/stressors has been linked to the development of many human diseases. They could affect various cellular components, such as DNA, proteins, lipids, and non-coding RNAs (ncRNA), thereby triggering various cellular pathways, particularly oxidative stress, inflammatory responses, and apoptosis, which can contribute to pathophysiological states. Accordingly, modulation of these pathways has been the focus of numerous investigations for managing related diseases.

View Article and Find Full Text PDF

It is now clear that CD8+ T cells are crucial for therapeutic immunity against chronic viral infections and/or tumors. We reason that a strategy capable of improving CD8+ T cell activation would improve the efficacy of protein-based vaccines, which predominantly generate CD4+ T cell-mediated responses. Herein, we explore the ability of a novel cell-penetrating peptide (CPP), LAH4, to facilitate intracellular delivery of protein-based vaccines adjuvanted with Toll-like receptor 9 agonist CpG oligonucleotide (CpG) to generate enhanced CD8+ T cell immune responses and antitumor effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!