Antioxidants (AOs) from natural resources are an attractive research area, as petroleum-based products can be replaced in polymer stabilization. Therefore, novel esters based on the -hydroxycinnamic acids -coumaric acid, ferulic acid and sinapic acid were synthesized and their structure properties relationships were investigated. The structures of the novel bio-based antioxidants were verified using NMR and Fourier-transform infrared (FTIR) spectrometry. The high thermal stability above 280 °C and, therefore, their suitability as potential plastic stabilizers were shown using thermal gravimetric analysis (TGA). The radical scavenging activity of the synthesized esters was evaluated by using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. Stabilization performance was evaluated in polypropylene (PP) using extended extrusion experiments, oxidation induction time (OIT) measurements and accelerated heat aging. In particular, the sinapic acid derivative provides a processing stability of PP being superior to the commercial state-of-the-art stabilizer octadecyl 3-(3,5---butyl-4-hydroxyphenyl)propionate.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10490272 | PMC |
http://dx.doi.org/10.3390/polym15173621 | DOI Listing |
Cardiovasc Ther
January 2025
Centre for Natural Products Discovery, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool L3 3AF, UK.
The research is aimed at exploring the potential of marigold petal tea (MPT), rich in polyphenol contents, against oxidative stress and obesity in a rat model following a high-fat-sugar diet (HFSD). The MPT was prepared through the customary method of decoction and was subjected to analysis for its polyphenol composition using reversed-phase high-performance liquid chromatography (RP-HPLC). Two specific doses of MPT, namely, 250 and 500 mg/kg body weight (BW), were chosen for the study-referred to as MPT-250 and MPT-500, respectively.
View Article and Find Full Text PDFFood Chem
December 2024
Centro para Investigaciones en Granos y Semillas, Universidad de Costa Rica, 11501 San Pedro, San José, Costa Rica. Electronic address:
Common beans (Phaseolus vulgaris L.) are widely consumed legumes in Latin America and Africa, valued for their nutritional compounds and antioxidants. Their high polyphenol content contributes to the antioxidant properties, with bioactive compounds showing antifungal and antimycotoxin effects.
View Article and Find Full Text PDFWei Sheng Yan Jiu
November 2024
Shenzhen Center for Chronic Disease Control, Shenzhen 518020, China.
Objective: To detect phenolic acid compounds in various fruits and explore the differences in phenolic acids among different types of fruits.
Methods: The collected 75 types of fruits were classified into 6 categories: citrus、melon、drupe、berry、tropical fruit and pome fruits. The phenolic acid compounds were detected by high performance liquid chromatography-mass spectrometry.
Naunyn Schmiedebergs Arch Pharmacol
December 2024
Department of Pathology, Faculty of Veterinary, Atatürk University, Erzurum, Turkey.
This study evaluates the protective effects of sinapic acid (SA), a polyphenolic compound with diverse biological activities, against ethanol-induced gastric ulcers in rats. A gastric ulcer model was established using ethanol (ETH), and the experimental groups received either omeprazole (OMEP, 20 mg/kg) or SA at doses of 20 mg/kg and 40 mg/kg via oral gavage for 14 days. Biochemical markers, including total antioxidant status (TAS), total oxidant status (TOS), oxidative stress index (OSI), malondialdehyde (MDA), and myeloperoxidase (MPO) activity, were assessed alongside proinflammatory cytokines (tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), and IL-6) using ELISA.
View Article and Find Full Text PDFChem Biodivers
December 2024
REQUIMTE/LAQV, Department of Chemistry, Campus Universitario de Santiago, University of Aveiro, Aveiro, Portugal.
Honey can benefit from non-thermal processing techniques such as high-pressure processing (HPP) to improve its quality and bioactivity. This study investigated the impact of HPP (600 MPa for 5, 10, and 15 min) on honey's quality, including the levels of hydroxymethylfurfural (HMF), antioxidant activity, total phenolic content (TPC), and phenolic profile. HPP treatment did not significantly affect HMF or TPC levels but led to selective changes in the phenolic profile.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!