The need to recycle carbon-fibre-reinforced composite polymers (CFRP) has grown significantly to reduce the environmental impact generated by their production. To meet this need, thermoreversible epoxy matrices have been developed in recent years. This study investigates the performance of an epoxy vitrimer made by introducing a metal catalyst (Zn) and its carbon fibre composites, focusing on the healing capability of the system. The dynamic crosslinking networks endow vitrimers with interesting rheological behaviour; the capability of the formulated resin (AV-5) has been assessed by creep tests. The analysis showed increased molecular mobility above a topology freezing temperature (T). However, the reinforcement phase inhibits the flow capability, reducing the flow. The fracture behaviour of CFRP made with the vitrimeric resin has been investigated by Mode I and Mode II tests and compared with the conventional system. The repairability of the vitrimeric CFRP has been investigated by attempting to recover the delaminated samples, which yielded unsatisfactory results. Moreover, the healing efficiency of the modified epoxy composites has been assessed using the vitrimer as an adhesive layer. The joints were able to recover about 84% of the lap shear strength of the pristine system.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10489754 | PMC |
http://dx.doi.org/10.3390/polym15173611 | DOI Listing |
Cancer Cell Int
January 2025
Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, 9 Beijing Road, Guiyang, Guizhou, 550004, P. R. China.
Background: XB130, a classical adaptor protein, exerts a critical role in diverse cellular processes. Aberrant expression of XB130 is closely associated with tumorigenesis and aggressiveness. However, the mechanisms governing its expression regulation remain poorly understood.
View Article and Find Full Text PDFInt Wound J
January 2025
Colzyx AB, Medicon Village, Lund, Sweden.
Wound healing is a central physiological process that restores the barrier properties of the skin after injury, comprising close coordination between several cell types (including fibroblasts and macrophages) in the wound bed. The complex mechanisms involved are executed and regulated by an equally complex, reciprocal signalling network involving numerous signalling molecules such as catabolic and anabolic inflammatory mediators (e.g.
View Article and Find Full Text PDFActa Biomater
January 2025
Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100005, China. Electronic address:
Limbal stem cell deficiency (LSCD) causes vision loss and is often treated by simple corneal epithelial cell transplantation with poor long-term efficiency. Here, we present a biomimetic bilayer limbal implant using digital light processing 3D printing technology with gelatin methacrylate (GelMA) and poly (ethylene glycol) diacrylate (PEGDA) bioinks containing corneal epithelial cells (CECs) and corneal stromal stem cells (CSSCs), which can transplant CECs and improve the limbal niche simultaneously. The GelMA/PEGDA hydrogel possessed robust mechanical properties to support surgical transplantation and had good transparency, suitable swelling and degradation rate as a corneal implant.
View Article and Find Full Text PDFActa Biomater
January 2025
School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, 325027, P. R. China. Electronic address:
Bioorg Chem
January 2025
Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah 30002 Saudi Arabia. Electronic address:
The discovery of novel anti-cancer drugs motivated us to synthesize a new series of triple 1,2,3-triazole-based arm scaffolds featuring distinct un functionalized alkyl and/or aryl side chains with possible anti-cancer action using the click chemistry approach under both conventional and green microwave irradiation (MWI) methods. The Cu(I) catalyzed cycloaddition reaction of targeted tris-alkyne with un functionalized aliphatic and aromatic azides has been adopted as an efficient approach for synthesizing the desired click adducts. Microwave irradiation improved the synthetic processes, resulting in higher yields and faster reaction times.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!