Ultrasonic welding technology represents an advanced method for joining thermoplastic composites. However, there exists a scarcity of systematic investigations into welding parameters and their influence on the morphological characteristics and quality of the welded regions. Furthermore, a comprehensive experimental understanding of the welded joint failure mechanisms remains deficient. A robust model for simulating the failure behavior of welded joints under loading has yet to be formulated. In this study, ultrasonic welded specimens were fabricated using distinct welding control methods and varied parameter combinations. Diverse experimental methodologies are employed to assess the morphological features of the welded areas, ascertain specimen strength, and observe welding interface failure modes. Based on a cohesive model, a finite element model is developed to predict the strength of the ultrasonic welded joints and elucidate the failure mechanisms. The results showed that, under identical welding parameters, the specimens welded with a high amplitude and low welding force exhibit superior welding quality. The specimens produced under displacement control exhibit minimal dispersion in strength. The proposed finite element model effectively prognosticates both welded joint strength and failure modes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10489989PMC
http://dx.doi.org/10.3390/polym15173555DOI Listing

Publication Analysis

Top Keywords

ultrasonic welded
12
welded
9
welding parameters
8
welded joint
8
failure mechanisms
8
welded joints
8
failure modes
8
finite element
8
element model
8
welding
7

Similar Publications

Ultrasound can improve the quality of finished products by reducing porosity and enhancing microstructure in selective laser melting, directed energy deposition, and laser beam welding. This study evaluates the efficiency of ultrasound produced by a pulsed laser via the optoacoustic effect. A quantitative model of collapse of vapor-gas bubbles has been developed under the conditions of ultrasonic treatment at near resonance frequencies.

View Article and Find Full Text PDF

The nitrogen bubble bursting phenomenon during the welding process of high nitrogen steel (HNS) can lead to unstable droplet transfer and welding process, reducing the quality of weld formation. In this study, a novel approach, ultrasonic-assisted gas metal arc welding (U-GMAW), is proposed to suppress the escape of nitrogen gas during droplet transfer. This study investigates the influence of ultrasound on the metal transfer process during two distinct metal transfer modes: short-circuiting and droplet transfer.

View Article and Find Full Text PDF

This study presents a new approach to developing protective material structures for personal protective equipment (PPE), and in particular for protective gloves, with the use of ultrasonic and contact welding processes. The goal was to assess the quality of joints (welds) obtained between a synthetic polyamide knitted fabric (PA) and selected polymers (PLA, ABS, PET-G) in the developed materials using X-Ray microtomography (micro-CT). Quantitative and qualitative analyses were performed to determine the joint area produced by the selected welding methods for the examined materials.

View Article and Find Full Text PDF

Ultrasonic dissolution of solid Al in liquid Sn during soldering: Modeling and equation, trend prediction, accelerating effect.

Ultrason Sonochem

December 2024

State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbinxx 150001, China. Electronic address:

Soldering of ceramics/metals using an inactive commercial solder with the advantage of low cost has wide application prospects. The dissolution behavior of base metal could not be quantified, which has been a basic issue for the joining design. This work investigated the dissolution of the solid Al in liquid Sn with and without the ultrasound.

View Article and Find Full Text PDF

High-density polyethylene (HDPE) has emerged as a promising alternative to fiber-reinforced plastic (FRP) for small vessel manufacturing due to its durability, chemical resistance, lightweight properties, and recyclability. However, while thermoplastic polymers like HDPE have been extensively used in gas and water pipelines, their application in large, complex marine structures remains underexplored, particularly in terms of joining methods. Existing techniques, such as ultrasonic welding, laser welding, and friction stir welding, are unsuitable for large-scale HDPE components, where extrusion welding is more viable.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!