This research presents a novel stand-alone device for the autonomous measurement of gas pressure levels on an active landfill site, which enables the real-time monitoring of gas dynamics and supports the early detection of critical events. The developed device employs advanced sensing technologies and wireless communication capabilities, enabling remote data transmission and access via the Internet. Through extensive field experiments, we demonstrate the high sampling rate of the device and its ability to detect significant events related to gas generation dynamics in landfills, such as flare shutdowns or blockages that could lead to hazardous conditions. The validation of the device's performance against a high-end analytical system provides further evidence of its reliability and accuracy. The developed technology herein offers a cost-effective and scalable solution for environmental landfill gas monitoring and management. We expect that this research will contribute to the advancement of environmental monitoring technologies and facilitate better decision-making processes for sustainable waste management.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10490650 | PMC |
http://dx.doi.org/10.3390/s23177574 | DOI Listing |
BJC Rep
January 2025
School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK.
Single-use plastics (SUPs) are used widely in cancer research laboratories. They are cheap, durable, and lightweight, and until now have been considered disposable items. This, however, contributes significantly to unsustainable waste production.
View Article and Find Full Text PDFBioresour Technol
January 2025
Instituto de Ingeniería, Universidad Nacional Autónoma de México, Circuito Escolar, Ciudad Universitaria, C.P. 04510 Ciudad de México, México. Electronic address:
Biological methane oxidation can sustain high temperatures in organic matrices, such as landfill covers and compost biofilters. This study investigates the temperature dynamics, methane removal efficiency, and microbial community responses in a pilot scale compost biofilter under three methane concentrations (2, 4, and 8 % v v in air) with a 23-minute empty bed residence time. Complete methane removal was achieved at 2 %, with compost bed temperatures reaching 51 °C.
View Article and Find Full Text PDFIntegr Environ Assess Manag
January 2025
Ionian Department, University of Bari Aldo Moro, Bari, Italy.
Fugitive or diffuse methane emissions constitute an important source of damage to the environment, much greater even than CO2 both over a time span of 20 years and over a longer time span of 100. It is therefore of preeminent importance to undertake all the efforts necessary to implement new tools, protocols, and methods that contribute to the identification and measurement of these emissions to implement site-specific actions of mitigation, repair, and conscious management of the emitting plants. Among the remote sensing and leak detection technologies currently used, the tunable diode laser absorption spectroscopy (TDLAS) method plays a relevant role.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Zoology and Environment Sciences, Faculty of Science, University of Colombo, Colombo, 03, Sri Lanka.
There is increasing scientific interest in the potential links between meditation practice and pro-environmental behaviours. The present research investigates relationships between meditation experience (temporal variables of meditation, five facets of trait mindfulness), positive lifestyle habits (PLH), quality of life (QoL) and per-head carbon footprint (CF) among 25 skilled meditators. Self-reported validated questionnaires were given to a group of native speakers of Sri Lanka to collect data on meditation experience, PLH, and perceived QoL.
View Article and Find Full Text PDFHeliyon
January 2025
Interdisciplinary Research Center for Construction and Building Materials, Research Institute, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia.
Urbanization and population growth in India have quickened, leading to an annual generation of around 62 million tonnes of municipal solid waste (MSW). Improper management of organic waste presents a major environmental problem due to air and water pollution, soil contamination and greenhouse gas production. This research aims to develop refuse-derived fuel (RDF) as a viable option, converting waste into a high-calorific energy carrier for industrial use.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!