A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Functional Connectivity and Feature Fusion Enhance Multiclass Motor-Imagery Brain-Computer Interface Performance. | LitMetric

Functional Connectivity and Feature Fusion Enhance Multiclass Motor-Imagery Brain-Computer Interface Performance.

Sensors (Basel)

Department of Engineering for Innovation Medicine, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy.

Published: August 2023

(1) Background: in the field of motor-imagery brain-computer interfaces (MI-BCIs), obtaining discriminative features among multiple MI tasks poses a significant challenge. Typically, features are extracted from single electroencephalography (EEG) channels, neglecting their interconnections, which leads to limited results. To address this limitation, there has been growing interest in leveraging functional brain connectivity (FC) as a feature in MI-BCIs. However, the high inter- and intra-subject variability has so far limited its effectiveness in this domain. (2) Methods: we propose a novel signal processing framework that addresses this challenge. We extracted translation-invariant features (TIFs) obtained from a scattering convolution network (SCN) and brain connectivity features (BCFs). Through a feature fusion approach, we combined features extracted from selected channels and functional connectivity features, capitalizing on the strength of each component. Moreover, we employed a multiclass support vector machine (SVM) model to classify the extracted features. (3) Results: using a public dataset (IIa of the BCI Competition IV), we demonstrated that the feature fusion approach outperformed existing state-of-the-art methods. Notably, we found that the best results were achieved by merging TIFs with BCFs, rather than considering TIFs alone. (4) Conclusions: our proposed framework could be the key for improving the performance of a multiclass MI-BCI system.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10490741PMC
http://dx.doi.org/10.3390/s23177520DOI Listing

Publication Analysis

Top Keywords

feature fusion
12
functional connectivity
8
connectivity feature
8
motor-imagery brain-computer
8
features extracted
8
brain connectivity
8
connectivity features
8
fusion approach
8
features
7
feature
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!