Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Distributed acoustic sensing (DAS) is a promising technology for seismic data acquisition, particularly in downhole applications. However, downhole DAS measurements can be affected by the deployment method of the fibre-optic cable. These effects were explored in a field trial in two wells (one vertical and one deviated) drilled at the Otway International Test Centre. The trial in the well shows that (1) fibre-optic cables cemented behind the casing provide data of the highest quality due to the best coupling to the formation, and (2) tubing-conveyed cable shows only slightly weaker coupling, but the data quality can be severely degraded by source-generated noise. A cable loosely suspended in the well provided data quality comparable to that of the cemented DAS cable. To better understand the nature of the observed effects, the field experiments were supplemented by numerical modelling with a 1.5D full wave reflectivity algorithm (3D wave propagation in a 1D model), where cement, casing and wellbore were represented by infinite vertical layers. The results show that (1) a cement layer has only a slight effect (<5%) on the DAS amplitude; (2) the vertical strain in a liquid-filled borehole is comparable to that in the formation; and (3) the strain amplitude in the cable is of the same order of magnitude both in the formation and in the fluid. The strain in the cable is zero both when the cable's Poisson's ratio is zero and when the borehole fluid is air. The results confirm the feasibility of borehole DAS measurements with fibre-optic cables suspended in a borehole liquid (but not gas!).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10490705 | PMC |
http://dx.doi.org/10.3390/s23177501 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!