A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Optofluidic Sensor Based on Polymer Optical Microresonators for the Specific, Sensitive and Fast Detection of Chemical and Biochemical Species. | LitMetric

Optofluidic Sensor Based on Polymer Optical Microresonators for the Specific, Sensitive and Fast Detection of Chemical and Biochemical Species.

Sensors (Basel)

Laboratoire Lumière, Matière et Interfaces (LuMIn), Ecole Normale Superieure Paris Saclay, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 9024, CentraleSupelec, Institut d'Alembert, Université Paris Saclay, 4 Avenue des Sciences, 91190 Gif-sur-Yvette, France.

Published: August 2023

The accurate, rapid, and specific detection of DNA strands in solution is becoming increasingly important, especially in biomedical applications such as the trace detection of COVID-19 or cancer diagnosis. In this work we present the design, elaboration and characterization of an optofluidic sensor based on a polymer-based microresonator which shows a quick response time, a low detection limit and good sensitivity. The device is composed of a micro-racetrack waveguide vertically coupled to a bus waveguide and embedded within a microfluidic circuit. The spectral response of the microresonator, in air or immersed in deionised water, shows quality factors up to 72,900 and contrasts up to 0.9. The concentration of DNA strands in water is related to the spectral shift of the microresonator transmission function, as measured at the inflection points of resonance peaks in order to optimize the signal-over-noise ratio. After functionalization by a DNA probe strand on the surface of the microresonator, a specific and real time measurement of the complementary DNA strands in the solution is realized. Additionally, we have inferred the dissociation constant value of the binding equilibrium of the two complementary DNA strands and evidenced a sensitivity of 16.0 pm/µM and a detection limit of 121 nM.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10490054PMC
http://dx.doi.org/10.3390/s23177373DOI Listing

Publication Analysis

Top Keywords

dna strands
16
optofluidic sensor
8
sensor based
8
strands solution
8
detection limit
8
complementary dna
8
detection
5
dna
5
based polymer
4
polymer optical
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!