Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The purpose of this study was to investigate the effect of low-pressure plasma on the contact angle, shear bond strength (SBS), and the failure mode of zirconia ceramic. Zirconia specimens were divided into three groups according to the surface treatment methods as follows: sandblasting with aluminum oxide (ZR-C), sandblasting with aluminum oxide and oxygen plasma (ZR-CP), and argon plasma (ZR-P). The contact angle, SBS, and surface characteristics were tested after thermocycling. Data analysis was made using the Kruskal-Wallis test and one-way analysis of variance. Plasma treatment significantly reduced the contact angle ( < 0.001) with the lowest value for the Zr-P group. An increase in oxygen and a decrease in carbon was observed on the zirconia surface in both plasma groups. For the SBS, there were significant differences among the groups ( < 0.018), the Zr-CP group showing the highest bond strength. Mixed failures were the most frequent. Plasma treatment was effective in increasing the wettability, increasing the oxygen/carbon ratio without changing zirconia surface morphology. The sandblasting plus plasma with oxygen group exhibited the highest bond strength.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10488541 | PMC |
http://dx.doi.org/10.3390/ma16176055 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!