Boron-doped nanodiamonds (BNDs) have recently shown a promising potential in hyperthermia and thermoablation therapy, especially in heating tumor cells. To remotely monitor eigen temperature during such operations, diamond color centers have shown a sensitive optical temperature sensing. Nitrogen-vacancy (NV) color center in diamonds have shown the best sensitivity in nanothermometry; however, spin manipulation of the NV center with green laser and microwave-frequency excitations is still a huge challenge for biological applications. Silicon-vacancy (SiV) color center in nano/bulk diamonds has shown a great potential to be a good replacement of the NV center in diamond as it can be excited and detected within the biological transparency window and its thermometry operations depends only on its zero-phonon line (ZPL) shift as a function of temperature changes. In this work, BNDs were carefully etched on smooth diamond nanocrystals' sharp edges and implanted with silicon for optical temperature sensing. Optical temperature sensing using SiV color centers in BNDs was performed over a small range of temperature within the biological temperature window (296-308 K) with an excellent sensitivity of 0.2 K in 10 s integration time. These results indicate that there are likely to be better application of more biocompatible BNDs in hyperthermia and thermoablation therapy using a biocompatible diamond color center.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10488927 | PMC |
http://dx.doi.org/10.3390/ma16175942 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
Jilin University, College of Electronic Science and Engineering, State Key Laboratory of Integrated Optoelectronics, Qianjin Avenue 2699, Changchun, 130012, Changchun, CHINA.
Stable luminescent diradicals, characterized by the presence of two unpaired electrons, exhibit unique photophysical properties that are sensitive to external stimuli such as temperature, magnetic fields, and microwaves. This sensitivity allows the manipulation of their spin states and luminescence, setting them apart from traditional closed-shell luminescent molecules and luminescent monoradicals. As a result, luminescent diradicals are emerging as promising candidates for a variety of applications.
View Article and Find Full Text PDFNatl Sci Rev
January 2025
Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China.
The noise equivalent temperature difference (NETD) indicates the minimum temperature difference resolvable by using an infrared detector. The lower the NETD, the better the sensor can register small temperature differences. In this work, we proposed a strategy to achieve a high temperature resolution using a superconducting nanowire single-photon detector (SNSPD) with ultra-high sensitivity.
View Article and Find Full Text PDFDalton Trans
January 2025
Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, 2907 East Gate City Boulevard, Greensboro, NC 27401, USA.
Facile phase selective synthesis of copper antimony sulphide (CAS) nanostructures is important because of their tunable photoconductive and electrochemical properties. In this study, off-stoichiometric famatinite phase CAS (CAS) quasi-spherical and quasi-hexagonal colloidal nanostructures (including nanosheets) of sizes, 2.4-18.
View Article and Find Full Text PDFNat Chem
January 2025
Department of Chemistry, University of California Irvine, Irvine, CA, USA.
Controlling reaction outcomes through external influences is a central goal in chemistry. Vibrational coupling between molecular vibrations and cavity modes is rapidly emerging as a distinct strategy compared with conventional thermochemical and photochemical methods; however, insight into the fundamental mechanisms remains limited. Here we investigate how vibrational weak and strong coupling in plasmonic nanocavities modifies the thermal dehydration of copper sulfate pentahydrate.
View Article and Find Full Text PDFCommun Chem
January 2025
National Institute of Chemistry, Hajdrihova 19, SI-1001, Ljubljana, Slovenia.
Iminophosphoranes with the general formula (RP═NR') have great potential in synthetic chemistry as valuable precursors/intermediates in organic synthesis or as building blocks for various organic compounds. However, the synthetic approaches and conditions to prepare iminophosphoranes are still poorly understood, limiting the utility of this chemistry for organic materials. In this article, a simple and efficient synthesis of previously unattainable poly(arylene iminophosphoranes) is reported.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!