This study compares subtractive manufacturing (SM) and additive manufacturing (AM) techniques in the production of stainless-steel parts with non-stick coatings. While subtractive manufacturing involves the machining of rolled products, additive manufacturing employs the FFF (fused filament fabrication) technique with metal filament and sintering. The applied non-stick coatings are commercially available and are manually sprayed with a spray gun, followed by a curing process. They are an FEP (fluorinated ethylene propylene)-based coating and a sol-gel ceramic coating. Key properties such as surface roughness, water droplet sliding angle, adhesion to the substrate and wear resistance were examined using abrasive blasting techniques. In the additive manufacturing process, a higher roughness of the samples was detected. In terms of sliding angle, variations were observed in the FEP-based coatings and no variations were observed in the ceramic coatings, with a slight increase for FEP in AM. In terms of adhesion to the substrate, the ceramic coatings applied in the additive process showed a superior behavior to that of subtractive manufacturing. On the other hand, FEP coatings showed comparable results for both techniques. In the wear resistance test, ceramic coatings outperformed FEP coatings for both techniques. In summary, additive manufacturing of non-stick coatings on stainless steel showed remarkable advantages in terms of roughness, adhesion and wear resistance compared to the conventional manufacturing approach. These results are of relevance in fields such as medicine, food industry, chemical industry and marine applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10489068 | PMC |
http://dx.doi.org/10.3390/ma16175851 | DOI Listing |
Sci Rep
December 2024
School of Electrical Engineering, Aalto University, P.O. Box 15500, Aalto, FI-00076, Finland.
Engineering plastics are finding widespread applications across a broad temperature spectrum, with additive manufacturing (AM) having now become commonplace for producing aerospace-grade components from polymers. However, there is limited data available on the behavior of plastic AM parts exposed to elevated temperatures. This study focuses on investigating the tensile strength, tensile modulus and Poisson's ratio of parts manufactured using fused filament fabrication (FFF) and polyetheretherketone (PEEK) plastics doped with two additives: short carbon fibers (SCFs) and multi-wall carbon nanotubes (MWCNTs).
View Article and Find Full Text PDFBioact Mater
April 2025
University of Coimbra, CEMMPRE, Department of Mechanical Engineering, 3030-788, Coimbra, Portugal.
Polymeric coronary stents, like the ABSORB™, are commonly used to treat atherosclerosis due to their bioresorbable and cell-compatible polymer structure. However, they face challenges such as high strut thickness, high elastic recoil, and lack of radiopacity. This study aims to address these limitations by modifying degradable stents produced by additive manufacturing with poly(lactic acid) (PLA) and poly(ε-caprolactone) (PCL) with degradable metallic coatings, specifically zinc (Zn) and magnesium (Mg), deposited via radiofrequency (rf) magnetron sputtering.
View Article and Find Full Text PDF3D Print Addit Manuf
December 2024
Mechanical and Aerospace Engineering, Missouri University of Science and Technology, Rolla, Missouri, USA.
Due to the high cost of each experimental run in additive manufacturing (AM), there has been a drive to develop simulations that can find the optimal processing parameters. The accuracy of these simulations is dependent on the accuracy of the material parameters recorded in literature. These reported parameters can vary widely resulting in differing simulation results.
View Article and Find Full Text PDF3D Print Addit Manuf
December 2024
Photo-Acoustics Research Laboratory, Department of Mechanical and Aerospace Engineering, Clarkson University, Potsdam, New York, USA.
Unlike many conventional manufacturing techniques, 3D Printing/Additive Manufacturing (3DP/AM) fabrication creates builds with unprecedented degrees of structural and geometrical complexities. However, uncertainties in 3DP/AM processes and material attributes could cause geometric and structural quality issues in resulting builds and products. Evaluating the sensitivity of process parameters and material properties for process optimization, quality assessment, and closed-loop control is crucial in practice.
View Article and Find Full Text PDF3D Print Addit Manuf
December 2024
Key Laboratory of Intelligent Manufacturing Technology (Shantou University), Ministry of Education, Shantou, China.
Cutting tools with orderly arranged diamond grits using additive manufacturing show better sharpness and longer service life than traditional diamond tools. A retractable needle jig with vacuum negative pressure was used to absorb and place grits in an orderly arranged manner. However, needle hole wear after a long service time could not promise complete grit adsorption forever.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!