Commonly used tool materials for machining wood-based materials are WC-Co carbides. Although they have been known for a long time, there is still much development in the field of sintered tool materials, especially WC-Co carbides and superhard materials. The use of new manufacturing methods (such as FAST-field-assisted sintering technology), which use pulses of electric current for heating, can improve the properties of the materials used for cutting tools, thereby increasing the cost-effectiveness of machining. The ability to increase tool life without the downtime associated with tool wear allows significant cost savings, particularly in mass production. This paper presents the results of a study of the effect of grain size and cobalt content of carbide tool sinters on the tribological properties of the materials studied. The powders used for consolidation were characterised by irregular shape and formed agglomerates of different sizes. Tribological tests were carried out using the T-01 (ball-on-disc) method. In order to determine the wear kinetics, the entire friction path was divided into 15 cycles of 200 m and the weight loss was measured after each stage. In order to determine the mechanism and intensity of wear of the tested materials under technically dry friction conditions, the surface of the tested sinters was observed before the test and after 5, 10, and 15 cycles. The conclusions of the study indicate that the predominant effect of surface cooperation at the friction node is abrasion due to the material chipping that occurs during the process. The results confirm the influence of sintered grain size and cobalt content on durability. In the context of the application of the materials in question for cutting tools, it can be pointed out that sintered WC(0.4)_4 has the highest potential for use in the manufacture of cutting tools.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10488490 | PMC |
http://dx.doi.org/10.3390/ma16175836 | DOI Listing |
Materials (Basel)
January 2025
Institute of Machine Tools and Production Engineering, Faculty of Mechanical Engineering, Lodz University of Technology, Stefanowskiego 1/15, 90-537 Lodz, Poland.
The aim of the work was to investigate the influence of the machining parameters on the surface roughness and tool wear during slot milling of a polyurethane block (PUB). In the experiment, the influence of the cutting speed, the feed per tooth and the depth of cut on the roughness and of the milling slot surface and wear of the end mill was analyzed. A three-axis CNC milling machine Emco Concept Mill 55 was used to perform the study.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Institute of Machine Tools and Production Engineering, Faculty of Mechanical Engineering, Lodz University of Technology, Stefanowskiego 1/15, 90-537 Lodz, Poland.
The article presents the results of research aimed at developing mathematical models for determining the components of grinding force occurring during the sharpening of the rake face of hob cutters. The development of the models was based on the results obtained during experimental tests conducted in the first stage of the research. The studies were carried out using a tool grinder and an aluminum oxide grinding wheel.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Institute of Mechanical Technology, Poznan University of Technology, 3 Piotrowo Street, 60-965 Poznan, Poland.
Titanium alloys, particularly Ti-6Al-4V, are widely used in many industries due to their high strength, low density, and corrosion resistance. However, machining these materials is challenging due to high strength at elevated temperatures, low thermal conductivity, and high chemical reactivity. This study investigates Recurrence Plot (RP) and Recurrence Quantification Analysis (RQA) to analyze tool wear during the finish turning of Ti-6Al-4V.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Department of Physical and Colloid Chemistry, Kazan National Research Technological University, 420015 Kazan, Russia.
Microfluidics provides cutting-edge technological advancements for the in-channel manipulation and analysis of dissolved macromolecular species. The intrinsic potential of microfluidic devices to control key characteristics of polymer macromolecules such as their size distribution requires unleashing its full capacity. This work proposes a combined approach to analyzing the microscale behavior of polymer solutions and modifying their properties.
View Article and Find Full Text PDFJpn J Radiol
January 2025
Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden.
Artificial intelligence (AI) has emerged as a transformative tool in breast cancer screening, with two distinct applications: computer-aided cancer detection (CAD) and risk prediction. While AI CAD systems are slowly finding its way into clinical practice to assist radiologists or make independent reads, this review focuses on AI risk models, which aim to predict a patient's likelihood of being diagnosed with breast cancer within a few years after negative screening. Unlike AI CAD systems, AI risk models are mainly explored in research settings without widespread clinical adoption.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!