The intensive development of 3D Concrete Printing (3DCP) technology causes constantly increased its share in the construction sector. However, in order to produce products with controlled properties, optimization of the technological process is still required. Automation of production based on additive manufacturing methods streamlines the process by comprehensively manufacturing building components that meet, among others, strength, visual, and insulation requirements. Moreover, the possibility of using computer simulations to assess the properties of the designed elements allows for a multitude of analyzed versions of the constructed partitions, which can be verified at the design stage. Thanks to such an opportunity, the process of designing building elements can be significantly improved. The article presents results related to the assessment of the level of thermal insulation of products that can be produced by additive technology, depending on the applied spatial geometry of the vertical partition and the amount and type of materials used. Eight original solutions of in-fill pattern were designed, for which both Finite Element Method (FEM) computer simulations of thermal conductivity and experimental measurements of thermal conductivity of samples were performed. On the basis of the obtained results, both the correctness of the simulation results for the various analyzed materials and their consistency with the practical results were found. Depending on the investigated geometry, for samples of the same dimensions and using the same material, the differences in the U-factor obtained by FEM analysis amounted to 61%. The best solution from the investigated spatial geometries of the vertical partitions has been indicated. The U parameter in the variant with the best thermal insulation was 0.183 W/mK, which meets the requirements of Polish construction law. The issues discussed in this work can be the basis for the selection of the best solution possible for practical use during the production of building walls using the 3DCP method fulfilling the guidelines of applicable standards. Furthermore, they can be used as a tool for optimizing geometry in terms of energy savings and reducing waste production by both engineers developing 3DCP technologies and architects using innovative techniques for manufacturing building structures.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10488613PMC
http://dx.doi.org/10.3390/ma16175772DOI Listing

Publication Analysis

Top Keywords

thermal insulation
12
in-fill pattern
8
manufacturing building
8
computer simulations
8
thermal conductivity
8
best solution
8
building
5
thermal
5
influence in-fill
4
pattern printed
4

Similar Publications

Thermophysical properties of graphene reinforced with polymethyl methacrylate nanoparticles for technological applications: a molecular model.

J Mol Model

January 2025

Escuela Superior de Física y Matemáticas, IPN S/N, Edificio 9 de la Unidad Profesional "Adolfo López Mateos", Col. Lindavista, Alc. Gustavo A. Madero, 07738, Mexico City, Mexico.

Context: "Nanostructure of graphene-reinforced with polymethyl methacrylate" (PMMA-G), and vice versa, is investigated using its molecular structure, in the present work. The PMMA-G nanostructure was constructed by bonding PMMA with graphene nanosheet in a sense to get three different configurations. Each configuration consisted of polymeric structures with three degrees of polymerization (such as monomers, dimers, and trimers polymers, respectively).

View Article and Find Full Text PDF

Aerogels hold great potential in thermal insulation, catalytic supports, adsorption, and separation, due to their low density, high porosity, and low thermal conductivity. However, their inherent mechanical fragility and limited control functionality pose substantial challenges that hinder their practical use. In this study, a strategy is developed for the fabrication of cross-linked aramid nanofiber aerogels (cANFAs) by combining internanofiber surface cross-linking with ice-templating techniques.

View Article and Find Full Text PDF

Developing active-layer systems with both high performance and mechanical robustness is a crucial step towards achieving future commercialization of flexible and stretchable organic solar cells (OSCs). Herein, we design and synthesize a series of acceptors BTA-C6, BTA-E3, BTA-E6, and BTA-E9, featuring the side chains of hexyl, and 3, 6, and 9 carbon-chain with ethyl ester end groups respectively. Benefiting from suitable phase separation and vertical phase distribution, the PM6:BTA-E3-based OSCs processed by o-xylene exhibit lower energy loss and improved charge transport characteristic and achieve a power conversion efficiency of 19.

View Article and Find Full Text PDF

Solar-driven interfacial evaporation technology is regarded as a promising strategy for global freshwater shortage owing to its green and sustainable desalination process. Graphene aerogel (GA) is widely utilized in the design of solar-driven steam generation systems due to its excellent photothermal conversion efficiency and broad spectral absorption. Given the significant impact of hydrophilicity and thermal insulation on the performance of evaporators, nitrogen doping in the graphene structure not only effectively enhances its wettability but also allows for moderate tuning of its thermal conductivity, thereby optimizing the overall performance of the evaporator.

View Article and Find Full Text PDF

In various applications, the pore structure of a porous medium must be controlled to facilitate heat and mass transfer, which considerably influence the system performance. Freeze-casting is a versatile technique for creating aligned pores; However, because of the complexity of the associated equipment and the energy inefficiency of liquid-nitrogen-based cooling in a room-temperature environment, limits scalability for industrial applications. This study is aimed at establishing a novel freeze-casting strategy with a simple mold design combining heat-conductive and insulating materials for long-range pore alignment via directional ice growth under deep-freezing conditions, rendering it feasible for large-scale production.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!