Crop breeding is an important global strategy to meet sustainable food demand. CRISPR/Cas is a most promising gene-editing technology for rapid and precise generation of novel germplasm and promoting the development of a series of new breeding techniques, which will certainly lead to the transformation of agricultural innovation. In this review, we summarize recent advances of CRISPR/Cas technology in gene function analyses and the generation of new germplasms with increased yield, improved product quality, and enhanced resistance to biotic and abiotic stress. We highlight their applications and breakthroughs in agriculture, including crop de novo domestication, decoupling the gene pleiotropy tradeoff, crop hybrid seed conventional production, hybrid rice asexual reproduction, and double haploid breeding; the continuous development and application of these technologies will undoubtedly usher in a new era for crop breeding. Moreover, the challenges and development of CRISPR/Cas technology in crops are also discussed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10489799 | PMC |
http://dx.doi.org/10.3390/plants12173119 | DOI Listing |
Viruses
January 2025
Program in Microbiology and Immunology, University of Pittsburgh, Pittsburgh, PA 15219, USA.
As a ubiquitous human pathogen, the Epstein-Barr virus (EBV) has established lifelong persistent infection in about 95% of the adult population. The EBV infection is associated with approximately 200,000 human cancer cases and 140,000 deaths per year. The presence of EBV in tumor cells provides a unique advantage in targeting the viral genome (also known as episome), to develop anti-cancer therapeutics.
View Article and Find Full Text PDFPathogens
January 2025
Department of Aquatic Animal Disease, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa 16059, Türkiye.
Consuming raw or undercooked mussels can lead to gastroenteritis and septicemia due to contamination. This study analyzed the prevalence, density, species diversity, and molecular traits of spp. in 48 fresh raw wild mussels (FRMs) and 48 ready-to-eat stuffed mussels (RTE-SMs) through genome analysis, assessing health risks.
View Article and Find Full Text PDFMicroorganisms
January 2025
Hainan Province Key Laboratory of One Health, School of Life and Health Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China.
The pervasive and often indiscriminate use of antibiotics has accelerated the emergence of drug-resistant bacterial strains, thus presenting an acute threat to global public health. Despite a growing acknowledgment of the severity of this crisis, the current suite of strategies to mitigate antimicrobial resistance remains markedly inadequate. This paper asserts the paramount need for the swift development of groundbreaking antimicrobial strategies and provides a comprehensive review of an array of innovative techniques currently under scrutiny.
View Article and Find Full Text PDFMicroorganisms
December 2024
Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
Antimicrobial resistance (AMR) represents a critical global health threat, and a thorough understanding of resistance mechanisms in is needed to guide effective treatment interventions. This review explores recent advances for investigating AMR in , including machine learning for resistance pattern analysis, laboratory evolution to generate resistant mutants, mutant library construction, and genome sequencing for in-depth characterization. Key resistance mechanisms are discussed, including drug inactivation, target modification, altered transport, and metabolic adaptation.
View Article and Find Full Text PDFDiagnostics (Basel)
January 2025
Division of Pathology and Laboratory Medicine, Children's National Hospital, Washington, DC 20010, USA.
With the advent of a variety of vaccines against viral infections, there are multiple viruses that can be prevented via vaccination. However, breakthrough infections or uncovered strains can still cause vaccine-preventable viral infections (VPVIs). Therefore, timely diagnosis, treatment, and surveillance of these viruses is critical to patient care and public health.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!