In poorly consolidated carbonate rock reservoirs, solids production risk, which can lead to increased environmental waste, can be mitigated by injecting formation-strengthening chemicals. Classical atomistic molecular dynamics (MD) simulation is employed to model the interaction of polyacrylamide-based polymer additives with a calcite structure, which is the main component of carbonate formations. Amongst the possible calcite crystal planes employed as surrogates of reservoir rocks, the (1 0 4) plane is shown to be the most suitable surrogate for assessing the interactions with chemicals due to its stability and more realistic representation of carbonate structure. The molecular conformation and binding energies of pure polyacrylamide (PAM), hydrolysed polyacrylamide in neutral form (HPAM), hydrolysed polyacrylamide with 33% charge density (HPAM 33%) and sulfonated polyacrylamide with 33% charge density (SPAM 33%) are assessed to determine the adsorption characteristics onto calcite surfaces. An adsorption-free energy analysis, using an enhanced umbrella sampling method, is applied to evaluate the chemical adsorption performance. The interaction energy analysis shows that the polyacrylamide-based polymers display favourable interactions with the calcite structure. This is attributed to the electrostatic attraction between the amide and carboxyl functional groups with the calcite. Simulations confirm that HPAM33% has a lower free energy than other polymers, presumably due to the presence of the acrylate monomer in ionised form. The superior chemical adsorption performance of HPAM33% agrees with Atomic Force Microscopy experiments reported herein.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10563068 | PMC |
http://dx.doi.org/10.3390/molecules28176367 | DOI Listing |
Methods Mol Biol
January 2025
Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
Measurements of cell phylogeny based on natural or induced mutations, known as lineage barcodes, in conjunction with molecular phenotype have become increasingly feasible for a large number of single cells. In this chapter, we delve into Quantitative Fate Mapping (QFM) and its computational pipeline, which enables the interrogation of the dynamics of progenitor cells and their fate restriction during development. The methods described here include inferring cell phylogeny with the Phylotime model, and reconstructing progenitor state hierarchy, commitment time, population size, and commitment bias with the ICE-FASE algorithm.
View Article and Find Full Text PDFLangmuir
January 2025
Department of Chemistry, Yuvaraja's College, University of Mysore, Manasagangotri, 570006 Mysuru, India.
Al-air batteries are distinguished by their high theoretical energy density, yet their broader application is hindered by hydrogen evolution corrosion. This research focuses Beta (+) d-glucose (S1) and Adonite (S2) as potential corrosion inhibitors for the Al-5052 alloy within a 4 M NaOH solution. Utilizing electrochemical techniques, hydrogen evolution assessments, and surface analyses, our findings indicate enhancements in anode utilization by 21.
View Article and Find Full Text PDFMethods Mol Biol
January 2025
Stowers Institute for Medical Research, Kansas City, MO, USA.
Understanding the spatial and temporal dynamics of gene expression is crucial for unraveling molecular mechanisms underlying various biological processes. While traditional methods have offered insights into gene expression patterns, they primarily focus on mature mRNA transcripts, lacking real-time visualization of newly synthesized or nascent transcription events. Recent advancements in monitoring nascent transcription in live cells provide valuable insights into transcriptional dynamics.
View Article and Find Full Text PDFFunct Integr Genomics
January 2025
Department of Clinical Laboratory, the Fourth Affiliated Hospital of School of medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China.
Since December 2019, the global dissemination of a novel coronavirus has precipitated a notable public health crisis, prompting considerable interest and scrutiny from governmental and scholarly entities. Substantial research efforts have been dedicated to exploring diverse facets of this novel coronavirus, encompassing its pathogenesis, transmission dynamics, and therapeutic interventions. Recent findings suggest that circular RNAs (circRNAs) exert a pivotal influence on modulating viral infectivity and immune defense mechanisms.
View Article and Find Full Text PDFImmunol Rev
December 2024
Laboratory of Immunobiology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.
αβT cells protect vertebrates against many diseases, optimizing surveillance using mechanical force to distinguish between pathophysiologic cellular alterations and normal self-constituents. The multi-subunit αβT-cell receptor (TCR) operates outside of thermal equilibrium, harvesting energy via physical forces generated by T-cell motility and actin-myosin machinery. When a peptide-bound major histocompatibility complex molecule (pMHC) on an antigen presenting cell is ligated, the αβTCR on the T cell leverages force to form a catch bond, prolonging bond lifetime, and enhancing antigen discrimination.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!