Monoamine oxidases (MAOs) are well-known pharmacological targets in neurological and neurodegenerative diseases. However, recent studies have revealed a new role for MAOs in certain types of cancer such as glioblastoma and prostate cancer, in which they have been found overexpressed. This finding is opening new frontiers for MAO inhibitors as potential antiproliferative agents. In light of our previous studies demonstrating how a polyamine scaffold can act as MAO inhibitor, our aim was to search for novel analogs with greater inhibitory potency for human MAOs and possibly with antiproliferative activity. A small in-house library of polyamine analogs (-) was selected to investigate the effect of constrained linkers between the inner amine functions of a polyamine backbone on the inhibitory potency. Compounds and , characterized by a dianiline () or dianilide () moiety, emerged as the most potent, reversible, and mainly competitive MAO inhibitors (Ki < 1 μM). Additionally, they exhibited a high antiproliferative activity in the LN-229 human glioblastoma cell line (GI < 1 μM). The scaffold of compound could represent a potential starting point for future development of anticancer agents endowed with MAO inhibitory activity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10490032 | PMC |
http://dx.doi.org/10.3390/molecules28176329 | DOI Listing |
Development
January 2025
Department of Biological Chemistry and Pharmacology, The Ohio State University Medical Center, Columbus OH, USA.
Zebrafish have a high capacity to regenerate their hearts. Several studies have surveyed transcriptional enhancers to understand how gene expression is controlled during heart regeneration. We have identified REN or the runx1 enhancer that during regeneration regulates the expression of the nearby runx1 gene.
View Article and Find Full Text PDFHistol Histopathol
December 2024
Department of Evaluation of Natural Resources, Environmental Studies and Research Institute, University of Sadat City, Egypt.
Cisplatin is an antineoplastic drug that exhibits toxicity dependent on dosage and has adverse reproductive effects. (Bitter melon) is a natural vegetable plant; its active ingredients possess antioxidant, apoptotic, antiproliferative, hypoglycemic, and other therapeutic properties. This study evaluates the effect of the administration of bitter melon extract, cisplatin, and cisplatin/bitter melon cotreatment on liver and kidney functions, serum and testicular oxidative status, testis histology, and sperm parameters.
View Article and Find Full Text PDFRSC Adv
January 2025
Institute of Organic Chemistry, Justus Liebig University 35392 Giessen Germany https://www.uni-giessen.de/de/fbz/fb08/Inst/organische-chemie/AGGoettlich.
Parasites account for huge economic losses by infecting agriculturally important plants and animals. Furthermore, morbidity and death caused by parasites affect a large part of the world population, especially in economically weak regions. Anthelmintic drugs to tackle this challenge remain scarce and their efficiency becomes increasingly endangered by the advent of drug resistance development.
View Article and Find Full Text PDFTetrahedron
February 2025
Department of Chemistry and Biochemistry, Baylor University, One Bear Place, No. 97348, Waco, Texas 76798-7348, United States.
Antibody-drug conjugates (ADCs) have advanced as a mainstay among the most promising cancer therapeutics, offering enhanced antigen targeting and encompassing wide diversity in their linker and payload components. Small-molecule inhibitors of tubulin polymerization have found success as payloads in FDA approved ADCs and represent further promise in next-generation, pre-clinical and developmental ADCs. Unique dual-mechanism payloads (previously designed and synthesized in our laboratories) function as both potent antiproliferative agents and promising vascular disrupting agents capable of imparting selective and effective damage to tumor-associated microvessels.
View Article and Find Full Text PDFTurk J Pharm Sci
January 2025
Saveetha University, Saveetha Institute of Medical and Technical Sciences, Saveetha College of Pharmacy, Department of Pharmaceutical Chemistry, Tamil Nadu, India.
Objectives: The present study aimed to assess the antiproliferative and pro-apoptotic effects of hinokitiol in osteosarcoma cells and targeting of glycogen synthase kinase 3 (GSK3).
Materials And Methods: The (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay was used to evaluate the cytotoxic potential of hinokitiol in osteosarcoma cells. Various concentrations of hinokitiol (5, 10, 20, 40, 60, and 80 μg/mL) were tested, and the half-maximal inhibitory concentration (IC) was calculated.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!