The Potential of -Mediated Nanotechnology Application in Sustainable Development Scopes.

Nanomaterials (Basel)

State Key Laboratory for Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.

Published: September 2023

The environmental impact of industrial development has been well-documented. The use of physical and chemical methods in industrial development has negative consequences for the environment, raising concerns about the sustainability of this approach. There is a growing need for advanced technologies that are compatible with preserving the environment. The use of fungi products for nanoparticle (NP) synthesis is a promising approach that has the potential to meet this need. The genus is a non-pathogenic filamentous fungus with a high degree of genetic diversity. Different strains of this genus have a variety of important environmental, agricultural, and industrial applications. Species of can be used to synthesize metallic NPs using a biological method that is environmentally friendly, low cost, energy saving, and non-toxic. In this review, we provide an overview of the role of metabolism in the synthesis of metallic NPs. We discuss the different metabolic pathways involved in NP synthesis, as well as the role of metabolic metabolites in stabilizing NPs and promoting their synergistic effects. In addition, the future perspective of NPs synthesized by extracts of is discussed, as well as their potential applications in biomedicine, agriculture, and environmental health.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10490099PMC
http://dx.doi.org/10.3390/nano13172475DOI Listing

Publication Analysis

Top Keywords

industrial development
8
metallic nps
8
potential -mediated
4
-mediated nanotechnology
4
nanotechnology application
4
application sustainable
4
sustainable development
4
development scopes
4
scopes environmental
4
environmental impact
4

Similar Publications

Light and dark biofilm adaptation impacts larval settlement in diverse coral species.

Environ Microbiome

January 2025

Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia.

Background: Recovery of degraded coral reefs is reliant upon the recruitment of coral larvae, yet the mechanisms behind coral larval settlement are not well understood, especially for non-acroporid species. Biofilms associated with reef substrates, such as coral rubble or crustose coralline algae, can induce coral larval settlement; however, the specific biochemical cues and the microorganisms that produce them remain largely unknown. Here, we assessed larval settlement responses in five non-acroporid broadcast-spawning coral species in the families Merulinidae, Lobophyllidae and Poritidae to biofilms developed in aquaria for either one or two months under light and dark treatments.

View Article and Find Full Text PDF

Controlling the energies of the single-rotor large wind turbine system using a new controller.

Sci Rep

January 2025

Department of Electrical Engineering, College of Engineering, King Khalid University, P.O. Box 394, Abha, 61421, KSA, Saudi Arabia.

In wind energy generation systems, ensuring high energy quality is critical but is often compromised due to the limited performance and durability of conventional regulators. To address this, this work presents a novel controller for managing the machine-side inverter of a single-rotor large wind turbine system using an induction machine-type generator. The proposed controller is designed using proportional, integral, and derivative error-based mechanisms, which fundamentally differ from traditional proportional-integral (PI) regulators.

View Article and Find Full Text PDF

This study first proposes an innovative method for optimizing the maximum power extraction from photovoltaic (PV) systems during dynamic and static environmental conditions (DSEC) by applying the horse herd optimization algorithm (HHOA). The HHOA is a bio-inspired technique that mimics the motion cycles of an entire herd of horses. Next, the linear active disturbance rejection control (LADRC) was applied to monitor the HHOA's reference voltage output.

View Article and Find Full Text PDF

Development of an in vivo ovarian cancer peritoneal carcinomatosis model for radioimmunotherapy testing.

Methods Cell Biol

January 2025

Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier (ICM), Montpellier, France. Electronic address:

Currently, Ovarian Cancer (OC) is the most lethal gynecological malignancy. In most patients, it progresses without clinical signs or symptoms, leading to a late diagnosis when it has already spread in the peritoneal cavity as peritoneal carcinomatosis (PC). To date, OC PC management is based on cytoreductive surgery to remove the macroscopic disease, followed by chemotherapy.

View Article and Find Full Text PDF

Enhanced production of recombinant calf chymosin in Kluyveromyces lactis via CRISPR-Cas9 engineering.

Bioresour Technol

January 2025

State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Engineering Research Center for Bio-enzyme Catalysis, Environmental Microbial Technology Center of Hubei Province, School of Life Sciences, Hubei University, Wuhan 430062, PR China. Electronic address:

As an important industrial enzyme, chymosin has been widely used in cheese manufacturing. Fermentation with Kluyveromyces lactis has allowed recombinant chymosin production to fit the growing global demand for cheese consumption; yet improvements can be made to allow for stable and larger-scale production. In this work, various chymosin producing (CP) strains were constructed via targeted chromosomal integration of various copies of a prochymosin expression cassette (PEC) using a CRISPR-Cas9 platform optimized for K.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!