A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Selective Area Epitaxy of Highly Strained InGaAs Quantum Wells (980-990 nm) in Ultrawide Windows Using Metalorganic Chemical Vapor Deposition. | LitMetric

We employed the selective-area-epitaxy technique using metalorganic chemical vapor deposition to fabricate and study samples of semiconductor heterostructures that incorporate highly strained InGaAs quantum wells (980-990 nm emission wavelength). Selective area epitaxy of InGaAs quantum wells was performed on templates that had a patterned periodic structure consisting of a window (where epitaxial growth occurred) and a passive mask (where epitaxial growth was suppressed), each with a width of 100 µm for every element. Additionally, a selectively grown potential barrier layer was included, which was characterized by an almost parabolic curvature profile of the surface. We conducted a study on the influence of the curvature profile of the growth surface on the optical properties of InGaAs quantum wells and the spatial distribution of composition in an ultrawide window. Our results showed that, under fixed selective-area-epitaxy conditions, the composition of the InGaAs and the wavelength of the quantum-well emission changed across the width of the window. Our study demonstrates that increasing the curvature profile of the growth surface of highly strained quantum wells leads to a transition in the photoluminescence wavelength distribution profile across the window, from quasi-parabolic to inverted parabolic.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10489628PMC
http://dx.doi.org/10.3390/nano13172386DOI Listing

Publication Analysis

Top Keywords

quantum wells
20
ingaas quantum
16
highly strained
12
curvature profile
12
selective area
8
area epitaxy
8
strained ingaas
8
wells 980-990
8
metalorganic chemical
8
chemical vapor
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!