Modern irradiation techniques for optimized conformal TBI can be realized by Helical Tomotherapy (HT) or Volumetric Modulated Arc Therapy (VMAT), depending on the availability of suitable specialized equipment. In this dosimetric planning study, we compared both modalities and addressed the question of whether VMAT with small field sizes is also suitable as a backup in case of HT equipment malfunctions. For this purpose, we retrospectively used planning computed tomography (CT) data from 10 patients treated with HT with a total dose of 8 Gy (n = 5) or 12 Gy (n = 5) for treatment planning for VMAT with a small field size (36 × 22 cm). The target volume coverage, dose homogeneity at target volume, and dose reduction in organs at risk (OAR) (lungs, kidneys, lenses) were analyzed and compared. One patient was irradiated with both modalities due to a device failure of the HT equipment during the study, which facilitated a comparison in a real clinical setting. The findings indicate that in addition to a higher mean dose to the lenses in the 12 Gy group for VMAT and a better dose homogeneity in the target volume for HT, comparably good and adequate target dose coverage and dose reduction in the other OAR could be achieved for both modalities, with significantly longer treatment times for VMAT. In conclusion, after appropriate optimization of the treatment times, VMAT using linear accelerator radiosurgery technology can be used both as a backup in addition to HT and in clinical routines to perform optimized conformal TBI.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10486387 | PMC |
http://dx.doi.org/10.3390/cancers15174220 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!