A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Recurrent Implantation Failure: Bioinformatic Discovery of Biomarkers and Identification of Metabolic Subtypes. | LitMetric

Recurrent implantation failure (RIF) is a challenging scenario from different standpoints. This study aimed to investigate its correlation with the endometrial metabolic characteristics. Transcriptomics data of 70 RIF and 99 normal endometrium tissues were retrieved from the Gene Expression Omnibus database. Common differentially expressed metabolism-related genes were extracted and various enrichment analyses were applied. Then, RIF was classified using a consensus clustering approach. Three machine learning methods were employed for screening key genes, and they were validated through the RT-qPCR experiment in the endometrium of 10 RIF and 10 healthy individuals. Receiver operator characteristic (ROC) curves were generated and validated by 20 RIF and 20 healthy individuals from Peking University People's Hospital. We uncovered 109 RIF-related metabolic genes and proposed a novel two-subtype RIF classification according to their metabolic features. Eight characteristic genes (, , , , , , , and ) were identified, and the area under curve (AUC) was 0.902 and the external validated AUC was 0.867. Higher immune cell infiltration levels were found in RIF patients and a metabolism-related regulatory network was constructed. Our work has explored the metabolic and immune characteristics of RIF, which paves a new road to future investigation of the related pathogenic mechanisms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10487894PMC
http://dx.doi.org/10.3390/ijms241713488DOI Listing

Publication Analysis

Top Keywords

recurrent implantation
8
implantation failure
8
rif
8
rif healthy
8
healthy individuals
8
metabolic
5
failure bioinformatic
4
bioinformatic discovery
4
discovery biomarkers
4
biomarkers identification
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!