The hepatitis B virus (HBV) is constantly exposed to significant oxidative stress characterized by elevated levels of reactive oxygen species (ROS), such as HO, during infection in hepatocytes of patients. In this study, we demonstrated that HO inhibits HBV replication in a p53-dependent fashion in human hepatoma cell lines expressing sodium taurocholate cotransporting polypeptide. Interestingly, HO failed to inhibit the replication of an HBV X protein (HBx)-null HBV mutant, but this defect was successfully complemented by ectopic expression of HBx. Additionally, HO upregulated p53 levels, leading to increased expression of seven in absentia homolog 1 (Siah-1) levels. Siah-1, an E3 ligase, induced the ubiquitination-dependent proteasomal degradation of HBx. The inhibitory effect of HO was nearly abolished not only by treatment with a representative antioxidant, N-acetyl-L-cysteine but also by knockdown of either p53 or Siah-1 using specific short hairpin RNA, confirming the role of p53 and Siah-1 in the inhibition of HBV replication by HO. The present study provides insights into the mechanism that regulates HBV replication under conditions of oxidative stress in patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10488175PMC
http://dx.doi.org/10.3390/ijms241713354DOI Listing

Publication Analysis

Top Keywords

hbv replication
12
hepatitis virus
8
proteasomal degradation
8
human hepatoma
8
oxidative stress
8
p53 siah-1
8
hbv
6
replication
5
hydrogen peroxide
4
peroxide inhibits
4

Similar Publications

Hepatitis B virus hijacks MRE11-RAD50-NBS1 complex to form its minichromosome.

PLoS Pathog

January 2025

State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Medical School, Wuhan University, Wuhan, China.

Chronic hepatitis B virus (HBV) infection can significantly increase the incidence of cirrhosis and liver cancer, and there is no curative treatment. The persistence of HBV covalently closed circular DNA (cccDNA) is the major obstacle of antiviral treatments. cccDNA is formed through repairing viral partially double-stranded relaxed circular DNA (rcDNA) by varies host factors.

View Article and Find Full Text PDF

Manganese is a potent inducer of lysosomal activity that inhibits de novo HBV infection.

PLoS Pathog

January 2025

Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai, China.

Sodium taurocholate co-transporting polypeptide (NTCP) has been identified as an entry receptor for hepatitis B virus (HBV), but the molecular events of the viral post-endocytosis steps remain obscure. In this study, we discovered that manganese (Mn) could strongly inhibit HBV infection in NTCP-reconstituted HepG2 cells without affecting viral replication. We therefore profiled the antiviral effects of Mn2+ in an attempt to elucidate the regulatory mechanisms involved in early HBV infection.

View Article and Find Full Text PDF

Hepatitis B virus-induced cirrhosis: Mechanisms, global variations, and treatment advances.

World J Hepatol

December 2024

Institute of Liver Diseases, Institute of Translational Medicine, The First Hospital of Jilin University, Changchun 130061, Jilin Province, China.

We focus on hepatitis B virus (HBV)-induced cirrhosis, global differences, and the evolution of antiviral treatment strategies. Chronic HBV (CHB) infection affects more than 250 million people globally, leading to cirrhosis and hepatocellular carcinoma. The aim of this article was to synthesize the current understanding of the pathophysiological mechanisms and clinical consequences of HBV-induced cirrhosis, and explore differences in disease progression between geographic regions.

View Article and Find Full Text PDF

Background: In regions with a high prevalence of chronic hepatitis B virus (HBV) and hepatitis C virus (HCV) infections, coinfected patients face a heightened risk of developing hepatocellular carcinoma (HCC), termed HBV/HCV-related HCC (HBCV-HCC). We aimed to investigate the contribution of preexisting chronic hepatitis B (CHB) and subsequent chronic hepatitis C (CHC) to the development of HBCV-HCC.

Methods: We examined HBV's involvement in 93 HBCV-HCC cases by analyzing HBV DNA integration as an indicator of HCC originating from HBV-infected hepatocytes, compared with 164 HBV-HCCs and 56 HCV-HCCs as controls.

View Article and Find Full Text PDF

The host gene regulates HBV replication via HBV PRE-induced nuclear export.

Acta Biochim Biophys Sin (Shanghai)

December 2024

Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China.

The persistent global burden of hepatitis B virus (HBV) infection has prompted ongoing investigations into host determinants of viral control. In this study, we investigate the regulatory influence of the host gene cleavage stimulation factor subunit 2 (CSTF2) on HBV replication dynamics. We demonstrate differential CSTF2 expression across the spectrum of HBV infection phases, with upregulated expression noted during the immune-reactive and inactive carrier states compared with the immune-tolerant phase.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!