Bisphenol A (BPA) is an endocrine-disrupting compound, and the binding mechanism of BPA with carrier proteins has drawn widespread attention. Halogen substitutions can significantly impact the properties of BPA, resulting in various effects for human health. Here, we selected tetrabromobisphenol A (TBBPA) and tetrachlorobisphenol A (TCBPA) to investigate the interaction between different halogen-substituted BPAs and human serum albumin (HSA). TBBPA/TCBPA spontaneously occupied site I and formed stable binary complexes with HSA. Compared to TCBPA, TBBPA has higher binding affinity to HSA. The effect of different halogen substituents on the negatively charged surface area of BPA was an important reason for the higher binding affinity of TBBPA to HSA compared to TCBPA. Hydrogen bonds and van der Waals forces were crucial in the TCBPA-HSA complex, while the main driving factor for the formation of the TBBPA-HSA complex was hydrophobic interactions. Moreover, the presence of TBBPA/TCBPA changed the secondary structure of HSA. Amino acid residues such as Lys199, Lys195, Phe211, Arg218, His242, Leu481, and Trp214 were found to play crucial roles in the binding process between BPA compounds and HSA. Furthermore, the presence of halogen substituents facilitated the binding of BPA compounds with HSA.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10487517 | PMC |
http://dx.doi.org/10.3390/ijms241713281 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
Shandong University of Science and Technology, Institute of Carbon Neutrality, College of Chemical and Biological Engineering, No 579 Qianwangang Road, Huangdao District, 266590, Qingdao, CHINA.
Traditionally weak buried interaction without customized chemical bonding always goes against the formation of high-quality perovskite film that highly determines the efficiency and stability of perovskite solar cells. To address this issue, herein, we propose a bimolecular nucleophilic substitution reaction (SN2) driving strategy to idealize the robust buried interface by simultaneously decorating underlying substrate and functionalizing [PbX6]4- octahedral framework with iodoacetamide and thiol molecules, respectively. Theoretical and experimental results demonstrate that a strong SN2 reaction between exposed halogen and thiol group in two molecules occurs, which not only benefits the reinforcement of buried adhesion, but also triggers target-point-oriented crystallization, synergistically upgrading the upper perovskite film quality and accelerating interfacial charge extraction-transfer behavior.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
School of Marine Sciences, Zhuhai Key Laboratory of Marine Bioresources and Environment, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Sun Yat-Sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China.
Increasing evidence suggests that organohalogen contaminants (OHCs) could disrupt lipid metabolism in organisms, prompting consideration of fatty acids (FAs) as biological tools for assessing chemical stress in biological systems. This study examined 87 OHCs and 32 FAs in two sentinel cetacean species─Indo-Pacific humpback dolphins ( = 128) and Indo-Pacific finless porpoises ( = 26)─from the northern South China Sea (NSCS), a global hotspot for OHCs. Our results revealed higher OHC levels in these cetaceans than global averages.
View Article and Find Full Text PDFIUCrJ
March 2025
Department of Chemistry, Università degli Studi di Milano, via Golgi 19, 20133 Milano, Italy.
A detailed study of the X...
View Article and Find Full Text PDFChemphyschem
January 2025
Utah State University, Department of Chemistry and Biochemistry, 0300 Old Main Hill, 84322-0300, Logan, UNITED STATES OF AMERICA.
A halobenzene molecule contains several sites that are capable of acting in an electron-donating capacity within a H-bond. One set of such sites comprise the lone electron pairs of the halogen (X) atoms on the periphery of the ring. The π-electron system above the ring plane can also fulfill this function in many cases.
View Article and Find Full Text PDFInorg Chem
January 2025
Center for Computational Quantum Chemistry, University of Georgia, Athens, Georgia 30602, United States.
The isolation of nucleophilic boron bases has led to a paradigm shift in boron chemistry. Previous studies of the bis(carbene) borylene complexes revealed that these compounds possess strong donor abilities, and their reaction inertness is due to the large steric hindrance between boron reagents and reactant. In the present study, we have theoretically studied the [(N)BX] and [(N)BX] compounds (X = H, F, Cl, Br).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!