The Expression of P35 Plays a Key Role in the Difference in Apoptosis Induced by AcMNPV Infection in Different Cell Lines.

Int J Mol Sci

Shangdong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Qingdao Agricultural University, Qingdao 266109, China.

Published: August 2023

Baculovirus infection induces apoptosis in host cells, and apoptosis significantly affects virus production. (AcMNPV) can regulate apoptosis, but the regulatory mechanism is unclear. Here, we found that AcMNPV infection induced different apoptosis responses in different cell lines. In the early stages of viral infection (1-6 h), Se-1 cells underwent severe apoptosis, while Se-3 cells underwent very slight apoptosis. In the late stages of viral infection (12-72 h), Se-1 cells continued to undergo apoptosis and formed a large number of apoptotic bodies, while the apoptosis of Se-3 cells was inhibited and no apoptotic bodies were formed. To determine the reasons for the apoptosis differences in the two cell lines, we measured the expression of the six cysteine-dependent aspartate specific protease genes ( to ) and the three AcMNPV antiapoptotic protein genes (, and ) during viral infection. We found that were all activated in Se-1 cells and inhibited in Se-3 cells, whereas , and were all inhibited in Se-1 cells and normally expressed in Se-3 cells. And was expressed earlier than and in Se-3 cells. Otherwise, Se-1 and Se-3 cells would all be apoptotic when infected with the recombinant knockout AcMNPV, whereas only Se-1 cells were apoptotic, but Se-3 cells were not apoptotic when infected with the recombinant repair AcMNPV. Combined with the fact that the expression of P35 protein is inhibited in Se-1 cells but normally expressed in Se-3 cells during the infection of recombinant repair AcMNPV, we proposed that the different expression of P35 is an important reason for the apoptosis differences between the two cell lines. We also found that some genes associated with apoptosis can probably regulate the expression of P35. However, the major upstream regulators of P35 and their mechanisms are still unclear and will be studied in the future.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10487845PMC
http://dx.doi.org/10.3390/ijms241713228DOI Listing

Publication Analysis

Top Keywords

se-3 cells
32
se-1 cells
24
expression p35
16
cell lines
16
cells
15
apoptosis
12
viral infection
12
cells inhibited
12
cells expressed
12
cells apoptotic
12

Similar Publications

Why SbSe/CdS Interface Produces Higher Power Conversion Efficiency.

J Phys Chem Lett

January 2025

College of Physics Science and Technology, Hebei University, Baoding 071002, China.

Developing the Cd-free electron transport layer (ETL) is a crucial subject in the field of antimony selenide (SbSe) solar cells. At present, the power conversion efficiency (PCE) of the Cd-free SbSe solar cell is still substantially lower than that of CdS-based devices. It is significant to reveal the electron transfer features in SbSe/CdS heterojunction and SbSe/Cd-free ETL heterojunction for development of a Cd-free SbSe solar cell with high PCE.

View Article and Find Full Text PDF

PO Tetrahedron Assisted Chelate Engineering for 10.67%-Efficient Antimony Selenosulfide Solar Cells.

Adv Mater

January 2025

Institute of Thin Film Physics and Applications, Shenzhen Key Laboratory of Advanced Thin Films and Applications, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China.

Anisotropic carrier transport and deep-level defect of antimony selenosulfide (Sb(S,Se)) absorber are two vital auses restraining the photovoltaic performance of this emerging thin-film solar cell. Herein, chelate engineering is proposed to prepare high-quality Sb(S,Se) film based on hydrothermal deposition approach, which realizes desirable carrier transport and passivated defects by using tetrahedral PO ion in dibasic sodium phosphate (NaHPO, DSP). The PO Lewis structure, on one hand in the form of [(SbO)(PO)] chelate, can adsorb on the polar planes of cadmium sulfide (CdS) layer, promoting the heterogeneous nucleation, and on the other hand, the tetrahedral PO inhibits horizontal growth of (SbS(e)) ribbons due to size effects, thus achieving desirable [hk1] orientation.

View Article and Find Full Text PDF

This study introduces a novel approach for non-small cell lung cancer (NSCLC) treatment by developing BiSe-Polysorbate nanoparticles as a multifunctional platform for photothermal therapy and targeted drug delivery. The BiSe-Polysorbates nanoparticles are engineered as innovative photosensitive drug carriers, enhancing biocompatibility through the combination of BiSe and Polysorbates. Characterization techniques such as Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and ultraviolet-visible (UV-Vis) spectroscopy confirm the successful synthesis of the nanoparticles.

View Article and Find Full Text PDF

Antimony selenide (SbSe) shows promise for photovoltaics due to its favorable properties and low toxicity. However, current SbSe solar cells exhibit efficiencies significantly below their theoretical limits, primarily due to interface recombination and non-optimal device architectures. This study presents a comprehensive numerical investigation of SbSe thin-film solar cells using SCAPS-1D simulation software, focusing on device architecture optimization and interface engineering.

View Article and Find Full Text PDF

Radiation therapy (RT) is one of the core therapies for current cancer management. However, the emergence of radioresistance has become a major cause of radiotherapy failure and disease progression. Therefore, overcoming radioresistance to achieve highly effective treatment for refractory tumors is significant yet challenging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!