Acid-sensing ion channels (ASICs) are proton-gated ion channels that mediate nociception in the peripheral nervous system and contribute to fear and learning in the central nervous system. Sevanol was reported previously as a naturally-occurring ASIC inhibitor from thyme with favorable analgesic and anti-inflammatory activity. Using electrophysiological methods, we found that in the high micromolar range, the compound effectively inhibited homomeric ASIC1a and, in sub- and low-micromolar ranges, positively modulated the currents of α1β2γ2 GABA receptors. Next, we tested the compound in anxiety-related behavior models using a targeted delivery into the hippocampus with parallel electroencephalographic measurements. In the open field, 6 µM sevanol reduced both locomotor and θ-rhythmic activity similar to GABA, suggesting a primary action on the GABAergic system. At 300 μM, sevanol markedly suppressed passive avoidance behavior, implying alterations in conditioned fear memory. The observed effects could be linked to distinct mechanisms involving GABAR and ASIC1a. These results elaborate the preclinical profile of sevanol as a candidate for drug development and support the role of ASIC channels in fear-related functions of the hippocampus.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10487430PMC
http://dx.doi.org/10.3390/ijms241713148DOI Listing

Publication Analysis

Top Keywords

asic channels
8
gaba receptors
8
ion channels
8
nervous system
8
dual modulator
4
modulator asic
4
channels
4
channels gaba
4
receptors thyme
4
thyme alters
4

Similar Publications

The Trapping Mechanism at the AlGaN/GaN Interface and the Turn-On Characteristics of the p-GaN Direct-Coupled FET Logic Inverters.

Nanomaterials (Basel)

December 2024

State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics & Systems, School of Microelectronics, Fudan University, Shanghai 200433, China.

The trapping mechanism at the AlGaN/GaN interface in the p-GaN high electron mobility transistors (HEMTs) and its impact on the turn-on characteristics of direct-coupled FET logic (DCFL) inverters were investigated across various supply voltages () and test frequencies (). The frequency-conductance method identified two trap states at the AlGaN/GaN interface (trap activation energy - ranges from 0.345 eV to 0.

View Article and Find Full Text PDF

Acid-sensing ion channels (ASICs) are typically activated by acidic environments and contribute to nociception and synaptic plasticity. ASIC1a is the most abundant subunit in the central nervous system and forms homomeric channels permeable to Na and Ca , making it a compelling therapeutic target for acidotic pathologies including stroke and traumatic brain injury. However, a complete conformational library of human ASIC1a in its various functional states has yet to be described.

View Article and Find Full Text PDF

Background: Acid-sensing ion channels are activated during myocardial ischemia and are implicated in the mechanism of myocardial ischemia-reperfusion injury (MIRI). Acid-sensing ion channel 3 (ASIC3), the most pH-sensitive member of the ASIC family, is highly expressed in myocardial tissues. However, the role of ASIC3 in MIRI and its precise effects on the myocardial metabolome remain unclear.

View Article and Find Full Text PDF

Time resolution is crucial in positron emission tomography (PET) to enhance the signal-to-noise ratio and image quality. Moreover, high sensitivity requires long scintillators, which can cause distortions in the reconstructed images due to parallax effects. This study evaluates the performance of a time-of-flight (TOF)-PET module that makes use of a single-side readout of a 4x4 3.

View Article and Find Full Text PDF

Molecular Insights into Single-Chain Lipid Modulation of Acid-Sensing Ion Channel 3.

J Phys Chem B

December 2024

Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, Mississippi 38677, United States.

Article Synopsis
  • * Research utilizing electrophysiology and molecular dynamics simulations indicates that PUFAs like docosahexaenoic acid (DHA) prevent a membrane phospholipid, POPC, from blocking the ion channel's pore, which enhances current flow.
  • * Single-channel recording confirms that DHA increases the current amplitude in ASIC3, supporting the idea that PUFAs relieve pore blockages and highlighting a new way these fatty acids influence ion channel function.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!